How to use the tensorly.abs function in tensorly

To help you get started, we’ve selected a few tensorly examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github tensorly / tensorly / tensorly / decomposition / candecomp_parafac.py View on Github external
non_negative : bool, default is False
        if True, non-negative factors are returned

    Returns
    -------
    factors : ndarray list
        List of initialized factors of the CP decomposition where element `i`
        is of shape (tensor.shape[i], rank)

    """
    rng = check_random_state(random_state)

    if init == 'random':
        factors = [tl.tensor(rng.random_sample((tensor.shape[i], rank)), **tl.context(tensor)) for i in range(tl.ndim(tensor))]
        if non_negative:
            factors = [tl.abs(f) for f in factors]
        if normalize_factors: 
            factors = [f/(tl.reshape(tl.norm(f, axis=0), (1, -1)) + 1e-12) for f in factors]
        return factors

    elif init == 'svd':
        try:
            svd_fun = tl.SVD_FUNS[svd]
        except KeyError:
            message = 'Got svd={}. However, for the current backend ({}), the possible choices are {}'.format(
                    svd, tl.get_backend(), tl.SVD_FUNS)
            raise ValueError(message)

        factors = []
        for mode in range(tl.ndim(tensor)):
            U, _, _ = svd_fun(unfold(tensor, mode), n_eigenvecs=rank)
github tensorly / tensorly / tensorly / tenalg / proximal.py View on Github external
[-2.9,  1.9,  0. ]])


    Example with missing values

    >>> mask = tl.tensor([[0, 0, 1], [1, 0, 1]])
    >>> soft_thresholding(tensor, mask*1.1)
    array([[ 1. , -2. ,  0.4],
           [-2.9,  3. ,  0. ]])

    See also
    --------
    inplace_soft_thresholding : Inplace version of the soft-thresholding operator
    svd_thresholding : SVD-thresholding operator
    """
    return tl.sign(tensor)*tl.clip(tl.abs(tensor) - threshold, a_min=0)
github tensorly / tensorly / tensorly / decomposition / candecomp_parafac.py View on Github external
weights = tl.norm(factor, order=2, axis=0)
                weights = tl.where(tl.abs(weights) <= tl.eps(tensor.dtype), 
                                   tl.ones(tl.shape(weights), **tl.context(factors[0])),
                                   weights)
                factor = factor/(tl.reshape(weights, (1, -1)))

            factors[mode] = factor

        if tol:
            # ||tensor - rec||^2 = ||tensor||^2 + ||rec||^2 - 2*
            factors_norm = kruskal_norm((weights, factors))

            # mttkrp and factor for the last mode. This is equivalent to the
            # inner product 
            iprod = tl.sum(tl.sum(mttkrp*factor, axis=0)*weights)
            rec_error = tl.sqrt(tl.abs(norm_tensor**2 + factors_norm**2 - 2*iprod)) / norm_tensor
            rec_errors.append(rec_error)

            if iteration >= 1:
                if verbose:
                    print('reconstruction error={}, variation={}.'.format(
                        rec_errors[-1], rec_errors[-2] - rec_errors[-1]))

                if tol and abs(rec_errors[-2] - rec_errors[-1]) < tol:
                    if verbose:
                        print('converged in {} iterations.'.format(iteration))
                    break       
            else:
                if verbose:
                    print('reconstruction error={}'.format(rec_errors[-1]))

    kruskal_tensor = KruskalTensor((weights, factors))
github tensorly / tensorly / tensorly / decomposition / _tucker.py View on Github external
rank = [tl.shape(tensor)[mode] for mode in range(tl.ndim(tensor))]

    elif isinstance(rank, int):
        n_mode = tl.ndim(tensor)
        message = "Given only one int for 'rank' for decomposition a tensor of order {}. Using this rank for all modes.".format(n_mode)
        warnings.warn(message, RuntimeWarning)
        rank = [rank]*n_mode


    epsilon = 10e-12

    # Initialisation
    if init == 'svd':
        core, factors = tucker(tensor, rank)
        nn_factors = [tl.abs(f) for f in factors]
        nn_core = tl.abs(core)
    else:
        rng = check_random_state(random_state)
        core = tl.tensor(rng.random_sample(rank) + 0.01, **tl.context(tensor))  # Check this
        factors = [tl.tensor(rng.random_sample(s), **tl.context(tensor)) for s in zip(tl.shape(tensor), rank)]
        nn_factors = [tl.abs(f) for f in factors]
        nn_core = tl.abs(core)

    norm_tensor = tl.norm(tensor, 2)
    rec_errors = []

    for iteration in range(n_iter_max):
        for mode in range(tl.ndim(tensor)):
            B = tucker_to_tensor((nn_core, nn_factors), skip_factor=mode)
            B = tl.transpose(unfold(B, mode))

            numerator = tl.dot(unfold(tensor, mode), B)
github tensorly / tensorly / tensorly / decomposition / _tucker.py View on Github external
rank = [rank]*n_mode


    epsilon = 10e-12

    # Initialisation
    if init == 'svd':
        core, factors = tucker(tensor, rank)
        nn_factors = [tl.abs(f) for f in factors]
        nn_core = tl.abs(core)
    else:
        rng = check_random_state(random_state)
        core = tl.tensor(rng.random_sample(rank) + 0.01, **tl.context(tensor))  # Check this
        factors = [tl.tensor(rng.random_sample(s), **tl.context(tensor)) for s in zip(tl.shape(tensor), rank)]
        nn_factors = [tl.abs(f) for f in factors]
        nn_core = tl.abs(core)

    norm_tensor = tl.norm(tensor, 2)
    rec_errors = []

    for iteration in range(n_iter_max):
        for mode in range(tl.ndim(tensor)):
            B = tucker_to_tensor((nn_core, nn_factors), skip_factor=mode)
            B = tl.transpose(unfold(B, mode))

            numerator = tl.dot(unfold(tensor, mode), B)
            numerator = tl.clip(numerator, a_min=epsilon, a_max=None)
            denominator = tl.dot(nn_factors[mode], tl.dot(tl.transpose(B), B))
            denominator = tl.clip(denominator, a_min=epsilon, a_max=None)
            nn_factors[mode] *= numerator / denominator

        numerator = tucker_to_tensor((tensor, nn_factors), transpose_factors=True)
github tensorly / tensorly / tensorly / decomposition / candecomp_parafac.py View on Github external
tensor = tensor*mask + tl.kruskal_to_tensor((None, factors), mask=1-mask)

            mttkrp = unfolding_dot_khatri_rao(tensor, (None, factors), mode)

            if non_negative:
                numerator = tl.clip(mttkrp, a_min=epsilon, a_max=None)
                denominator = tl.dot(factors[mode], accum)
                denominator = tl.clip(denominator, a_min=epsilon, a_max=None)
                factor = factors[mode] * numerator / denominator
            else:
                factor = tl.transpose(tl.solve(tl.conj(tl.transpose(pseudo_inverse)),
                                      tl.transpose(mttkrp)))
            
            if normalize_factors:
                weights = tl.norm(factor, order=2, axis=0)
                weights = tl.where(tl.abs(weights) <= tl.eps(tensor.dtype), 
                                   tl.ones(tl.shape(weights), **tl.context(factors[0])),
                                   weights)
                factor = factor/(tl.reshape(weights, (1, -1)))

            factors[mode] = factor

        if tol:
            # ||tensor - rec||^2 = ||tensor||^2 + ||rec||^2 - 2*
            factors_norm = kruskal_norm((weights, factors))

            # mttkrp and factor for the last mode. This is equivalent to the
            # inner product 
            iprod = tl.sum(tl.sum(mttkrp*factor, axis=0)*weights)
            rec_error = tl.sqrt(tl.abs(norm_tensor**2 + factors_norm**2 - 2*iprod)) / norm_tensor
            rec_errors.append(rec_error)
github tensorly / tensorly / tensorly / decomposition / candecomp_parafac.py View on Github external
factors = []
        for mode in range(tl.ndim(tensor)):
            U, _, _ = svd_fun(unfold(tensor, mode), n_eigenvecs=rank)

            if tensor.shape[mode] < rank:
                # TODO: this is a hack but it seems to do the job for now
                # factor = tl.tensor(np.zeros((U.shape[0], rank)), **tl.context(tensor))
                # factor[:, tensor.shape[mode]:] = tl.tensor(rng.random_sample((U.shape[0], rank - tl.shape(tensor)[mode])), **tl.context(tensor))
                # factor[:, :tensor.shape[mode]] = U
                random_part = tl.tensor(rng.random_sample((U.shape[0], rank - tl.shape(tensor)[mode])), **tl.context(tensor))
                U = tl.concatenate([U, random_part], axis=1)
            
            factor = U[:, :rank]
            if non_negative:
                factor = tl.abs(factor)
            if normalize_factors:
                factor = factor / (tl.reshape(tl.norm(factor, axis=0), (1, -1)) + 1e-12)
            factors.append(factor)
        return factors

    raise ValueError('Initialization method "{}" not recognized'.format(init))