Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
non_negative : bool, default is False
if True, non-negative factors are returned
Returns
-------
factors : ndarray list
List of initialized factors of the CP decomposition where element `i`
is of shape (tensor.shape[i], rank)
"""
rng = check_random_state(random_state)
if init == 'random':
factors = [tl.tensor(rng.random_sample((tensor.shape[i], rank)), **tl.context(tensor)) for i in range(tl.ndim(tensor))]
if non_negative:
factors = [tl.abs(f) for f in factors]
if normalize_factors:
factors = [f/(tl.reshape(tl.norm(f, axis=0), (1, -1)) + 1e-12) for f in factors]
return factors
elif init == 'svd':
try:
svd_fun = tl.SVD_FUNS[svd]
except KeyError:
message = 'Got svd={}. However, for the current backend ({}), the possible choices are {}'.format(
svd, tl.get_backend(), tl.SVD_FUNS)
raise ValueError(message)
factors = []
for mode in range(tl.ndim(tensor)):
U, _, _ = svd_fun(unfold(tensor, mode), n_eigenvecs=rank)
[-2.9, 1.9, 0. ]])
Example with missing values
>>> mask = tl.tensor([[0, 0, 1], [1, 0, 1]])
>>> soft_thresholding(tensor, mask*1.1)
array([[ 1. , -2. , 0.4],
[-2.9, 3. , 0. ]])
See also
--------
inplace_soft_thresholding : Inplace version of the soft-thresholding operator
svd_thresholding : SVD-thresholding operator
"""
return tl.sign(tensor)*tl.clip(tl.abs(tensor) - threshold, a_min=0)
weights = tl.norm(factor, order=2, axis=0)
weights = tl.where(tl.abs(weights) <= tl.eps(tensor.dtype),
tl.ones(tl.shape(weights), **tl.context(factors[0])),
weights)
factor = factor/(tl.reshape(weights, (1, -1)))
factors[mode] = factor
if tol:
# ||tensor - rec||^2 = ||tensor||^2 + ||rec||^2 - 2*
factors_norm = kruskal_norm((weights, factors))
# mttkrp and factor for the last mode. This is equivalent to the
# inner product
iprod = tl.sum(tl.sum(mttkrp*factor, axis=0)*weights)
rec_error = tl.sqrt(tl.abs(norm_tensor**2 + factors_norm**2 - 2*iprod)) / norm_tensor
rec_errors.append(rec_error)
if iteration >= 1:
if verbose:
print('reconstruction error={}, variation={}.'.format(
rec_errors[-1], rec_errors[-2] - rec_errors[-1]))
if tol and abs(rec_errors[-2] - rec_errors[-1]) < tol:
if verbose:
print('converged in {} iterations.'.format(iteration))
break
else:
if verbose:
print('reconstruction error={}'.format(rec_errors[-1]))
kruskal_tensor = KruskalTensor((weights, factors))
rank = [tl.shape(tensor)[mode] for mode in range(tl.ndim(tensor))]
elif isinstance(rank, int):
n_mode = tl.ndim(tensor)
message = "Given only one int for 'rank' for decomposition a tensor of order {}. Using this rank for all modes.".format(n_mode)
warnings.warn(message, RuntimeWarning)
rank = [rank]*n_mode
epsilon = 10e-12
# Initialisation
if init == 'svd':
core, factors = tucker(tensor, rank)
nn_factors = [tl.abs(f) for f in factors]
nn_core = tl.abs(core)
else:
rng = check_random_state(random_state)
core = tl.tensor(rng.random_sample(rank) + 0.01, **tl.context(tensor)) # Check this
factors = [tl.tensor(rng.random_sample(s), **tl.context(tensor)) for s in zip(tl.shape(tensor), rank)]
nn_factors = [tl.abs(f) for f in factors]
nn_core = tl.abs(core)
norm_tensor = tl.norm(tensor, 2)
rec_errors = []
for iteration in range(n_iter_max):
for mode in range(tl.ndim(tensor)):
B = tucker_to_tensor((nn_core, nn_factors), skip_factor=mode)
B = tl.transpose(unfold(B, mode))
numerator = tl.dot(unfold(tensor, mode), B)
rank = [rank]*n_mode
epsilon = 10e-12
# Initialisation
if init == 'svd':
core, factors = tucker(tensor, rank)
nn_factors = [tl.abs(f) for f in factors]
nn_core = tl.abs(core)
else:
rng = check_random_state(random_state)
core = tl.tensor(rng.random_sample(rank) + 0.01, **tl.context(tensor)) # Check this
factors = [tl.tensor(rng.random_sample(s), **tl.context(tensor)) for s in zip(tl.shape(tensor), rank)]
nn_factors = [tl.abs(f) for f in factors]
nn_core = tl.abs(core)
norm_tensor = tl.norm(tensor, 2)
rec_errors = []
for iteration in range(n_iter_max):
for mode in range(tl.ndim(tensor)):
B = tucker_to_tensor((nn_core, nn_factors), skip_factor=mode)
B = tl.transpose(unfold(B, mode))
numerator = tl.dot(unfold(tensor, mode), B)
numerator = tl.clip(numerator, a_min=epsilon, a_max=None)
denominator = tl.dot(nn_factors[mode], tl.dot(tl.transpose(B), B))
denominator = tl.clip(denominator, a_min=epsilon, a_max=None)
nn_factors[mode] *= numerator / denominator
numerator = tucker_to_tensor((tensor, nn_factors), transpose_factors=True)
tensor = tensor*mask + tl.kruskal_to_tensor((None, factors), mask=1-mask)
mttkrp = unfolding_dot_khatri_rao(tensor, (None, factors), mode)
if non_negative:
numerator = tl.clip(mttkrp, a_min=epsilon, a_max=None)
denominator = tl.dot(factors[mode], accum)
denominator = tl.clip(denominator, a_min=epsilon, a_max=None)
factor = factors[mode] * numerator / denominator
else:
factor = tl.transpose(tl.solve(tl.conj(tl.transpose(pseudo_inverse)),
tl.transpose(mttkrp)))
if normalize_factors:
weights = tl.norm(factor, order=2, axis=0)
weights = tl.where(tl.abs(weights) <= tl.eps(tensor.dtype),
tl.ones(tl.shape(weights), **tl.context(factors[0])),
weights)
factor = factor/(tl.reshape(weights, (1, -1)))
factors[mode] = factor
if tol:
# ||tensor - rec||^2 = ||tensor||^2 + ||rec||^2 - 2*
factors_norm = kruskal_norm((weights, factors))
# mttkrp and factor for the last mode. This is equivalent to the
# inner product
iprod = tl.sum(tl.sum(mttkrp*factor, axis=0)*weights)
rec_error = tl.sqrt(tl.abs(norm_tensor**2 + factors_norm**2 - 2*iprod)) / norm_tensor
rec_errors.append(rec_error)
factors = []
for mode in range(tl.ndim(tensor)):
U, _, _ = svd_fun(unfold(tensor, mode), n_eigenvecs=rank)
if tensor.shape[mode] < rank:
# TODO: this is a hack but it seems to do the job for now
# factor = tl.tensor(np.zeros((U.shape[0], rank)), **tl.context(tensor))
# factor[:, tensor.shape[mode]:] = tl.tensor(rng.random_sample((U.shape[0], rank - tl.shape(tensor)[mode])), **tl.context(tensor))
# factor[:, :tensor.shape[mode]] = U
random_part = tl.tensor(rng.random_sample((U.shape[0], rank - tl.shape(tensor)[mode])), **tl.context(tensor))
U = tl.concatenate([U, random_part], axis=1)
factor = U[:, :rank]
if non_negative:
factor = tl.abs(factor)
if normalize_factors:
factor = factor / (tl.reshape(tl.norm(factor, axis=0), (1, -1)) + 1e-12)
factors.append(factor)
return factors
raise ValueError('Initialization method "{}" not recognized'.format(init))