Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
ckpt = tf.train.Checkpoint(embeddings=embeddings)
checkpoint_file = output_dir + "/embeddings.ckpt"
ckpt.save(checkpoint_file)
reader = tf.train.load_checkpoint(output_dir)
variable_shape_map = reader.get_variable_to_shape_map()
key_to_use = ""
for key in variable_shape_map:
if "embeddings" in key:
key_to_use = key
config = projector.ProjectorConfig()
embedding = config.embeddings.add()
embedding.tensor_name = key_to_use
projector.visualize_embeddings(output_dir, config)
#%% Evaluate model
scores = model.evaluate(X_test, y_test, verbose=1)
print(f"Accuracy: {scores[1]:.2%}")
#%% Train with binary crossentropy and gram matrix
accuracies = []
for i in range(1, 21):
kernel = Lambda(lambda inputs: tf.reduce_sum(inputs[0] * inputs[1], axis=1))
model = Sequential([BasicCNN((32, 32, 3), i), GramMatrix(kernel)])
model.summary()
model.compile(
optimizer="adam", loss=BinaryCrossentropy(), metrics=[class_consistency_loss, min_eigenvalue],
)
model.fit(X_train, y_train, validation_split=0.2, epochs=20, batch_size=32)
# Load the saved meta graph and restore variables
saver = tf.train.import_meta_graph("{0}.meta".format(checkpoint_file))
saver.restore(sess, checkpoint_file)
else:
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
# Embedding visualization config
config = projector.ProjectorConfig()
embedding_conf = config.embeddings.add()
embedding_conf.tensor_name = "embedding"
embedding_conf.metadata_path = FLAGS.metadata_file
projector.visualize_embeddings(train_summary_writer, config)
projector.visualize_embeddings(validation_summary_writer, config)
# Save the embedding visualization
saver.save(sess, os.path.join(out_dir, "embedding", "embedding.ckpt"))
current_step = sess.run(rnn.global_step)
def train_step(x_batch_front, x_batch_behind, y_batch):
"""A single training step"""
feed_dict = {
rnn.input_x_front: x_batch_front,
rnn.input_x_behind: x_batch_behind,
rnn.input_y: y_batch,
rnn.dropout_keep_prob: FLAGS.dropout_keep_prob,
rnn.is_training: True
}
# Load the saved meta graph and restore variables
saver = tf.train.import_meta_graph("{0}.meta".format(checkpoint_file))
saver.restore(sess, checkpoint_file)
else:
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
# Embedding visualization config
config = projector.ProjectorConfig()
embedding_conf = config.embeddings.add()
embedding_conf.tensor_name = "embedding"
embedding_conf.metadata_path = FLAGS.metadata_file
projector.visualize_embeddings(train_summary_writer, config)
projector.visualize_embeddings(validation_summary_writer, config)
# Save the embedding visualization
saver.save(sess, os.path.join(out_dir, "embedding", "embedding.ckpt"))
current_step = sess.run(abcnn.global_step)
def train_step(x_batch_front, x_batch_behind, y_batch):
"""A single training step"""
feed_dict = {
abcnn.input_x_front: x_batch_front,
abcnn.input_x_behind: x_batch_behind,
abcnn.input_y: y_batch,
abcnn.dropout_keep_prob: FLAGS.dropout_keep_prob,
abcnn.is_training: True
}
saver = tf.train.import_meta_graph("{0}.meta".format(checkpoint_file))
saver.restore(sess, checkpoint_file)
else:
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
# Embedding visualization config
config = projector.ProjectorConfig()
embedding_conf = config.embeddings.add()
embedding_conf.tensor_name = "embedding"
embedding_conf.metadata_path = FLAGS.metadata_file
projector.visualize_embeddings(train_summary_writer, config)
projector.visualize_embeddings(validation_summary_writer, config)
# Save the embedding visualization
saver.save(sess, os.path.join(out_dir, "embedding", "embedding.ckpt"))
current_step = sess.run(cnn.global_step)
def train_step(x_batch_front, x_batch_behind, y_batch):
"""A single training step"""
feed_dict = {
cnn.input_x_front: x_batch_front,
cnn.input_x_behind: x_batch_behind,
cnn.input_y: y_batch,
cnn.dropout_keep_prob: FLAGS.dropout_keep_prob,
cnn.is_training: True
}
_, step, summaries, loss, accuracy = sess.run(
# Load the saved meta graph and restore variables
saver = tf.train.import_meta_graph("{0}.meta".format(checkpoint_file))
saver.restore(sess, checkpoint_file)
else:
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
# Embedding visualization config
config = projector.ProjectorConfig()
embedding_conf = config.embeddings.add()
embedding_conf.tensor_name = "embedding"
embedding_conf.metadata_path = FLAGS.metadata_file
projector.visualize_embeddings(train_summary_writer, config)
projector.visualize_embeddings(validation_summary_writer, config)
# Save the embedding visualization
saver.save(sess, os.path.join(out_dir, "embedding", "embedding.ckpt"))
current_step = sess.run(fasttext.global_step)
def train_step(x_batch_front, x_batch_behind, y_batch):
"""A single training step"""
feed_dict = {
fasttext.input_x_front: x_batch_front,
fasttext.input_x_behind: x_batch_behind,
fasttext.input_y: y_batch,
fasttext.dropout_keep_prob: FLAGS.dropout_keep_prob,
fasttext.is_training: True
}
saver = tf.train.import_meta_graph("{0}.meta".format(checkpoint_file))
saver.restore(sess, checkpoint_file)
else:
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
# Embedding visualization config
config = projector.ProjectorConfig()
embedding_conf = config.embeddings.add()
embedding_conf.tensor_name = "embedding"
embedding_conf.metadata_path = FLAGS.metadata_file
projector.visualize_embeddings(train_summary_writer, config)
projector.visualize_embeddings(validation_summary_writer, config)
# Save the embedding visualization
saver.save(sess, os.path.join(out_dir, "embedding", "embedding.ckpt"))
current_step = sess.run(rcnn.global_step)
def train_step(x_batch_front, x_batch_behind, y_batch):
"""A single training step"""
feed_dict = {
rcnn.input_x_front: x_batch_front,
rcnn.input_x_behind: x_batch_behind,
rcnn.input_y: y_batch,
rcnn.dropout_keep_prob: FLAGS.dropout_keep_prob,
rcnn.is_training: True
}
_, step, summaries, loss, accuracy = sess.run(
# Load the saved meta graph and restore variables
saver = tf.train.import_meta_graph("{0}.meta".format(checkpoint_file))
saver.restore(sess, checkpoint_file)
else:
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
# Embedding visualization config
config = projector.ProjectorConfig()
embedding_conf = config.embeddings.add()
embedding_conf.tensor_name = "embedding"
embedding_conf.metadata_path = FLAGS.metadata_file
projector.visualize_embeddings(train_summary_writer, config)
projector.visualize_embeddings(validation_summary_writer, config)
# Save the embedding visualization
saver.save(sess, os.path.join(out_dir, "embedding", "embedding.ckpt"))
current_step = sess.run(rcnn.global_step)
def train_step(x_batch_front, x_batch_behind, y_batch):
"""A single training step"""
feed_dict = {
rcnn.input_x_front: x_batch_front,
rcnn.input_x_behind: x_batch_behind,
rcnn.input_y: y_batch,
rcnn.dropout_keep_prob: FLAGS.dropout_keep_prob,
rcnn.is_training: True
}
saver = tf.train.import_meta_graph("{0}.meta".format(checkpoint_file))
saver.restore(sess, checkpoint_file)
else:
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
# Embedding visualization config
config = projector.ProjectorConfig()
embedding_conf = config.embeddings.add()
embedding_conf.tensor_name = "embedding"
embedding_conf.metadata_path = FLAGS.metadata_file
projector.visualize_embeddings(train_summary_writer, config)
projector.visualize_embeddings(validation_summary_writer, config)
# Save the embedding visualization
saver.save(sess, os.path.join(out_dir, "embedding", "embedding.ckpt"))
current_step = sess.run(fasttext.global_step)
def train_step(x_batch_front, x_batch_behind, y_batch):
"""A single training step"""
feed_dict = {
fasttext.input_x_front: x_batch_front,
fasttext.input_x_behind: x_batch_behind,
fasttext.input_y: y_batch,
fasttext.dropout_keep_prob: FLAGS.dropout_keep_prob,
fasttext.is_training: True
}
_, step, summaries, loss, accuracy = sess.run(