How to use the tensorboard.compat.tf2 function in tensorboard

To help you get started, we’ve selected a few tensorboard examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github tensorflow / tensorboard / tensorboard / plugins / histogram / summary_v2.py View on Github external
def when_nonempty():
            min_ = tf.reduce_min(input_tensor=data)
            max_ = tf.reduce_max(input_tensor=data)
            range_ = max_ - min_
            is_singular = tf.equal(range_, 0)

            def when_nonsingular():
                bucket_width = range_ / tf.cast(bucket_count, tf.float64)
                offsets = data - min_
                bucket_indices = tf.cast(
                    tf.floor(offsets / bucket_width), dtype=tf.int32
                )
                clamped_indices = tf.minimum(bucket_indices, bucket_count - 1)
                one_hots = tf.one_hot(clamped_indices, depth=bucket_count)
                bucket_counts = tf.cast(
                    tf.reduce_sum(input_tensor=one_hots, axis=0),
                    dtype=tf.float64,
                )
github tensorflow / tensorboard / tensorboard / plugins / hparams / summary_v2.py View on Github external
Args:
      name: As passed to `summary_scope`.
      pb: A `summary_pb2.Summary` message.

    Returns:
      A tensor whose value is `True` on success, or `False` if no summary
      was written because no default summary writer was available.
    """
    raw_pb = pb.SerializeToString()
    summary_scope = (
        getattr(tf.summary.experimental, "summary_scope", None)
        or tf.summary.summary_scope
    )
    with summary_scope(name):
        return tf.summary.experimental.write_raw_pb(raw_pb, step=0)
github tensorflow / tensorboard / tensorboard / plugins / histogram / summary_v2.py View on Github external
def when_nonsingular():
                bucket_width = range_ / tf.cast(bucket_count, tf.float64)
                offsets = data - min_
                bucket_indices = tf.cast(
                    tf.floor(offsets / bucket_width), dtype=tf.int32
                )
                clamped_indices = tf.minimum(bucket_indices, bucket_count - 1)
                one_hots = tf.one_hot(clamped_indices, depth=bucket_count)
                bucket_counts = tf.cast(
                    tf.reduce_sum(input_tensor=one_hots, axis=0),
                    dtype=tf.float64,
                )
                edges = tf.linspace(min_, max_, bucket_count + 1)
                # Ensure edges[-1] == max_, which TF's linspace implementation does not
                # do, leaving it subject to the whim of floating point rounding error.
                edges = tf.concat([edges[:-1], [max_]], 0)
                left_edges = edges[:-1]
                right_edges = edges[1:]
                return tf.transpose(
                    a=tf.stack([left_edges, right_edges, bucket_counts])
                )
github tensorflow / tensorboard / tensorboard / plugins / histogram / summary_v2.py View on Github external
"""Create a TensorFlow op to group data into histogram buckets.

    Arguments:
      data: A `Tensor` of any shape. Must be castable to `float64`.
      bucket_count: Optional positive `int` or scalar `int32` `Tensor`.
    Returns:
      A `Tensor` of shape `[k, 3]` and type `float64`. The `i`th row is
      a triple `[left_edge, right_edge, count]` for a single bucket.
      The value of `k` is either `bucket_count` or `1` or `0`.
    """
    if bucket_count is None:
        bucket_count = DEFAULT_BUCKET_COUNT
    with tf.name_scope("buckets"):
        tf.debugging.assert_scalar(bucket_count)
        tf.debugging.assert_type(bucket_count, tf.int32)
        data = tf.reshape(data, shape=[-1])  # flatten
        data = tf.cast(data, tf.float64)
        is_empty = tf.equal(tf.size(input=data), 0)

        def when_empty():
            return tf.constant([], shape=(0, 3), dtype=tf.float64)

        def when_nonempty():
            min_ = tf.reduce_min(input_tensor=data)
            max_ = tf.reduce_max(input_tensor=data)
            range_ = max_ - min_
            is_singular = tf.equal(range_, 0)

            def when_nonsingular():
                bucket_width = range_ / tf.cast(bucket_count, tf.float64)
                offsets = data - min_
                bucket_indices = tf.cast(
github tensorflow / tensorboard / tensorboard / plugins / audio / summary_v2.py View on Github external
def lazy_tensor():
            tf.debugging.assert_rank(data, 3)
            tf.debugging.assert_non_negative(max_outputs)
            limited_audio = data[:max_outputs]
            encode_fn = functools.partial(
                audio_ops.encode_wav, sample_rate=sample_rate
            )
            encoded_audio = tf.map_fn(
                encode_fn,
                limited_audio,
                dtype=tf.string,
                name="encode_each_audio",
            )
            # Workaround for map_fn returning float dtype for an empty elems input.
            encoded_audio = tf.cond(
                tf.shape(input=encoded_audio)[0] > 0,
                lambda: encoded_audio,
                lambda: tf.constant([], tf.string),
            )
github tensorflow / tensorboard / tensorboard / plugins / image / summary_v2.py View on Github external
images = tf.image.convert_image_dtype(data, tf.uint8, saturate=True)
            limited_images = images[:max_outputs]
            encoded_images = tf.map_fn(
                tf.image.encode_png,
                limited_images,
                dtype=tf.string,
                name="encode_each_image",
            )
            # Workaround for map_fn returning float dtype for an empty elems input.
            encoded_images = tf.cond(
                tf.shape(input=encoded_images)[0] > 0,
                lambda: encoded_images,
                lambda: tf.constant([], tf.string),
            )
            image_shape = tf.shape(input=images)
            dimensions = tf.stack(
                [
                    tf.as_string(image_shape[2], name="width"),
                    tf.as_string(image_shape[1], name="height"),
                ],
                name="dimensions",
            )
            return tf.concat([dimensions, encoded_images], axis=0)
github tensorflow / tensorboard / tensorboard / plugins / image / summary_v2.py View on Github external
lambda: encoded_images,
                lambda: tf.constant([], tf.string),
            )
            image_shape = tf.shape(input=images)
            dimensions = tf.stack(
                [
                    tf.as_string(image_shape[2], name="width"),
                    tf.as_string(image_shape[1], name="height"),
                ],
                name="dimensions",
            )
            return tf.concat([dimensions, encoded_images], axis=0)

        # To ensure that image encoding logic is only executed when summaries
        # are written, we pass callable to `tensor` parameter.
        return tf.summary.write(
            tag=tag, tensor=lazy_tensor, step=step, metadata=summary_metadata
        )
github tensorflow / tensorboard / tensorboard / plugins / histogram / summary_v2.py View on Github external
def _buckets(data, bucket_count=None):
    """Create a TensorFlow op to group data into histogram buckets.

    Arguments:
      data: A `Tensor` of any shape. Must be castable to `float64`.
      bucket_count: Optional positive `int` or scalar `int32` `Tensor`.
    Returns:
      A `Tensor` of shape `[k, 3]` and type `float64`. The `i`th row is
      a triple `[left_edge, right_edge, count]` for a single bucket.
      The value of `k` is either `bucket_count` or `1` or `0`.
    """
    if bucket_count is None:
        bucket_count = DEFAULT_BUCKET_COUNT
    with tf.name_scope("buckets"):
        tf.debugging.assert_scalar(bucket_count)
        tf.debugging.assert_type(bucket_count, tf.int32)
        data = tf.reshape(data, shape=[-1])  # flatten
        data = tf.cast(data, tf.float64)
        is_empty = tf.equal(tf.size(input=data), 0)

        def when_empty():
            return tf.constant([], shape=(0, 3), dtype=tf.float64)

        def when_nonempty():
            min_ = tf.reduce_min(input_tensor=data)
            max_ = tf.reduce_max(input_tensor=data)
            range_ = max_ - min_
            is_singular = tf.equal(range_, 0)

            def when_nonsingular():
                bucket_width = range_ / tf.cast(bucket_count, tf.float64)
                offsets = data - min_
github tensorflow / tensorboard / tensorboard / plugins / audio / summary_v2.py View on Github external
audio_ops.encode_wav, sample_rate=sample_rate
            )
            encoded_audio = tf.map_fn(
                encode_fn,
                limited_audio,
                dtype=tf.string,
                name="encode_each_audio",
            )
            # Workaround for map_fn returning float dtype for an empty elems input.
            encoded_audio = tf.cond(
                tf.shape(input=encoded_audio)[0] > 0,
                lambda: encoded_audio,
                lambda: tf.constant([], tf.string),
            )
            limited_labels = tf.tile([""], tf.shape(input=limited_audio)[:1])
            return tf.transpose(a=tf.stack([encoded_audio, limited_labels]))