How to use the swifter.resample function in swifter

To help you get started, we’ve selected a few swifter examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github jmcarpenter2 / swifter / swifter / swifter_tests.py View on Github external
def test_set_dask_threshold(self):
        LOG.info("test_set_dask_threshold")
        expected = 1000
        for swifter_df in [
            pd.DataFrame().swifter,
            pd.Series().swifter,
            pd.DataFrame(
                {"x": np.arange(0, 10)}, index=pd.date_range("2019-01-1", "2020-01-1", periods=10)
            ).swifter.rolling("1d"),
            pd.DataFrame(
                {"x": np.arange(0, 10)}, index=pd.date_range("2019-01-1", "2020-01-1", periods=10)
            ).swifter.resample("3T"),
        ]:
            before = swifter_df._dask_threshold
            swifter_df.set_dask_threshold(expected)
            actual = swifter_df._dask_threshold
            self.assertEqual(actual, expected)
            self.assertNotEqual(before, actual)
github jmcarpenter2 / swifter / swifter / swifter_tests.py View on Github external
def test_disable_progress_bar(self):
        LOG.info("test_disable_progress_bar")
        expected = False
        for swifter_df in [
            pd.DataFrame().swifter,
            pd.Series().swifter,
            pd.DataFrame(
                {"x": np.arange(0, 10)}, index=pd.date_range("2019-01-1", "2020-01-1", periods=10)
            ).swifter.rolling("1d"),
            pd.DataFrame(
                {"x": np.arange(0, 10)}, index=pd.date_range("2019-01-1", "2020-01-1", periods=10)
            ).swifter.resample("3T"),
        ]:
            before = swifter_df._progress_bar
            swifter_df.progress_bar(expected)
            actual = swifter_df._progress_bar
            self.assertEqual(actual, expected)
            self.assertNotEqual(before, actual)
github jmcarpenter2 / swifter / swifter / swifter_tests.py View on Github external
def test_set_dask_scheduler(self):
        LOG.info("test_set_dask_scheduler")
        expected = "my-scheduler"
        for swifter_df in [
            pd.DataFrame().swifter,
            pd.Series().swifter,
            pd.DataFrame(
                {"x": np.arange(0, 10)}, index=pd.date_range("2019-01-1", "2020-01-1", periods=10)
            ).swifter.rolling("1d"),
            pd.DataFrame(
                {"x": np.arange(0, 10)}, index=pd.date_range("2019-01-1", "2020-01-1", periods=10)
            ).swifter.resample("3T"),
        ]:
            before = swifter_df._scheduler
            swifter_df.set_dask_scheduler(expected)
            actual = swifter_df._scheduler
            self.assertEqual(actual, expected)
            self.assertNotEqual(before, actual)
github jmcarpenter2 / swifter / swifter / swifter_tests.py View on Github external
def test_set_npartitions(self):
        LOG.info("test_set_npartitions")
        for swifter_df, set_npartitions, expected in zip(
            [
                pd.DataFrame().swifter,
                pd.Series().swifter,
                pd.DataFrame(
                    {"x": np.arange(0, 10)}, index=pd.date_range("2019-01-1", "2020-01-1", periods=10)
                ).swifter.rolling("1d"),
                pd.DataFrame(
                    {"x": np.arange(0, 10)}, index=pd.date_range("2019-01-1", "2020-01-1", periods=10)
                ).swifter.resample("3T"),
            ],
            [None, 1000, 1001, 1002],
            [cpu_count() * 2, 1000, 1001, 1002],
        ):
            before = swifter_df._npartitions
            swifter_df.set_npartitions(set_npartitions)
            actual = swifter_df._npartitions
            self.assertEqual(actual, expected)
            if set_npartitions is not None:
                self.assertNotEqual(before, actual)

swifter

A package which efficiently applies any function to a pandas dataframe or series in the fastest available manner

MIT
Latest version published 1 year ago

Package Health Score

57 / 100
Full package analysis