How to use the swifter.apply function in swifter

To help you get started, we’ve selected a few swifter examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github exactpro / nostradamus / main / data_analysis.py View on Github external
Parameters:
            field_name (str): Name of the field by which we filter.
            field_value (str): Value of the field by which we filter.
            dataframe (DataFrame): Data that we filter.
            defect_attributes (dict): Defect attributes.
        
        Returns:
            Filtered DataFrame.

    """
    filtered_df = pandas.DataFrame()
    if field_name in session['config.ini']['DEFECT_ATTRIBUTES']['areas_of_testing']:
        field_value = 1 if field_value == 'Yes' else 0
        filtered_df = dataframe[dataframe[field_name+'_lab'].swifter.apply(bool) == field_value]
    if field_name in get_fields('Categorical', defect_attributes):
        filtered_df = dataframe[dataframe[field_name].swifter.apply(apply_categorical_filter, args=(field_value,))]
    if field_name in get_fields('Boolean', defect_attributes):
        field_value = 1 if field_value == 'Yes' else 0
        filtered_df = dataframe[dataframe[field_name].swifter.apply(bool) == field_value]
    if field_name in get_fields('String', defect_attributes):
        filtered_df = dataframe[dataframe[field_name] == field_value]
    if field_name in get_fields('Substring', defect_attributes):
        filtered_df = dataframe[dataframe[field_name].
                                  str.contains(field_value,
                                               case=False, na=False, regex=False)]
    if field_name in get_fields('Substring_array', defect_attributes):
        filtered_df = dataframe
        for pattern in field_value.split(','):
            filtered_df = apply_substring_array_filter(
                filtered_df, field_name, pattern.strip())
    if field_name[:-1] in get_fields('Numeric', defect_attributes):
        if field_name[-1] == '0':
github Ashton-Sidhu / aethos / aethos / stats / stats.py View on Github external
extreme = np.max(
                        np.abs(
                            self.x_train[row.feature].tolist()
                            + self.x_test[row.feature].tolist()
                        )
                    )
                    self.x_train.loc[:, row.feature].swifter.apply(np.log1p).hist(
                        ax=ax[i],
                        alpha=0.6,
                        label="Train",
                        density=True,
                        bins=np.arange(-extreme, extreme, 0.25),
                    )

                    self.x_test.loc[:, row.feature].swifter.apply(np.log1p).hist(
                        ax=ax[i],
                        alpha=0.6,
                        label="Train",
                        density=True,
                        bins=np.arange(-extreme, extreme, 0.25),
                    )

                    ax[i].set_title(f"Statistic = {row.statistic}, p = {row.p}")
                    ax[i].set_xlabel(f"Log({row.feature})")
                    ax[i].legend()

                plt.tight_layout()
                plt.show()

            if self.report is not None:
                self.report.report_technique(report_info, [])
github mozilla / CorporaCreator / src / corporacreator / corpora.py View on Github external
def create(self):
        """Creates a :class:`corporacreator.Corpus` for each locale.
        """
        _logger.info("Creating corpora...")
        corpora_data = self._parse_tsv()
        corpora_data[["sentence", "up_votes", "down_votes"]] = corpora_data[
            ["sentence", "up_votes", "down_votes"]
        ].swifter.apply(func=lambda arg: common_wrapper(*arg), axis=1)
        if self.args.langs:
            # check if all languages provided at command line are actually
            # in the clips.tsv file, if not, throw error
            if set(self.args.langs).issubset(set(corpora_data.locale.unique())):
                locales = self.args.langs
            else:
                raise argparse.ArgumentTypeError("ERROR: You have requested languages which do not exist in clips.tsv")
        else:
            locales = corpora_data.locale.unique()
            
        for locale in locales:
            _logger.info("Selecting %s corpus data..." % locale)
            corpus_data = corpora_data.loc[
                lambda df: df.locale == locale,
github mozilla / DeepSpeech / bin / import_gram_vaani.py View on Github external
def _convert_csv_data_to_raw_data(self):
        self.raw[["wav_filename","wav_filesize","transcript"]] = self.csv_data[
            ["audio_url","transcript","audio_length"]
        ].swifter.apply(func=lambda arg: self._convert_csv_data_to_raw_data_impl(*arg), axis=1, raw=True)
        self.raw.reset_index()
github nubank / fklearn / src / fklearn / training / transformation.py View on Github external
def p(df: pd.DataFrame) -> pd.DataFrame:
        if is_vectorized:
            return df.assign(**{col: transformation_function(df[col]) for col in columns_to_transform})

        return df.assign(**{col: df[col].swifter.apply(transformation_function) for col in columns_to_transform})
github mozilla / CorporaCreator / src / corporacreator / corpus.py View on Github external
def _pre_process_corpus_data(self):
        self.corpus_data[["sentence", "up_votes", "down_votes"]] = self.corpus_data[
            ["client_id", "sentence", "up_votes", "down_votes"]
        ].swifter.apply(func=lambda arg: self._preprocessor_wrapper(*arg), axis=1)

swifter

A package which efficiently applies any function to a pandas dataframe or series in the fastest available manner

MIT
Latest version published 1 year ago

Package Health Score

57 / 100
Full package analysis