Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
delayed(_parallel_fit)(
n_estimators_list[i],
base_estimators[starts[i]:starts[i + 1]],
X_train,
n_estimators,
rp_flags[starts[i]:starts[i + 1]],
objective_dim,
rp_method=rp_method,
verbose=True)
for i in range(n_jobs))
print('Orig Fit time:', time.time() - start)
print()
all_results = list(map(list, zip(*all_results)))
trained_estimators = _unfold_parallel(all_results[0], n_jobs)
jl_transformers = _unfold_parallel(all_results[1], n_jobs)
##########################################################################
start = time.time()
n_estimators = len(base_estimators)
n_estimators_list, starts, n_jobs = _partition_estimators(n_estimators,
n_jobs)
# model prediction
all_results_pred = Parallel(n_jobs=n_jobs, max_nbytes=None,
verbose=True)(
delayed(_parallel_predict)(
n_estimators_list[i],
trained_estimators[starts[i]:starts[i + 1]],
None,
X_test,
n_estimators,
n_estimators_list[i],
base_estimators[starts[i]:starts[i + 1]],
X_train,
n_estimators,
rp_flags[starts[i]:starts[i + 1]],
objective_dim,
rp_method=rp_method,
verbose=True)
for i in range(n_jobs))
print('Orig Fit time:', time.time() - start)
print()
all_results = list(map(list, zip(*all_results)))
trained_estimators = _unfold_parallel(all_results[0], n_jobs)
jl_transformers = _unfold_parallel(all_results[1], n_jobs)
##########################################################################
start = time.time()
n_estimators = len(base_estimators)
n_estimators_list, starts, n_jobs = _partition_estimators(n_estimators,
n_jobs)
# model prediction
all_results_pred = Parallel(n_jobs=n_jobs, max_nbytes=None,
verbose=True)(
delayed(_parallel_predict)(
n_estimators_list[i],
trained_estimators[starts[i]:starts[i + 1]],
None,
X_test,
n_estimators,
# rp_flags[starts[i]:starts[i + 1]],