Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
else:
# use simple equal split by sklearn
n_estimators_list, starts, n_jobs = _partition_estimators(
self.n_estimators, self.n_jobs)
# fit the base models
if self.verbose:
print('Parallel score prediction...')
start = time.time()
# TODO: code cleanup. There is an existing bug for joblib on Windows:
# https://github.com/joblib/joblib/issues/806
# max_nbytes can be dropped on other OS
all_results_scores = Parallel(n_jobs=n_jobs, max_nbytes=None,
verbose=True)(
delayed(_parallel_predict_proba)(
n_estimators_list[i],
self.base_estimators[starts[i]:starts[i + 1]],
self.approximators[starts[i]:starts[i + 1]],
X,
self.n_estimators,
# self.rp_flags[starts[i]:starts[i + 1]],
self.jl_transformers_[starts[i]:starts[i + 1]],
self.approx_flags[starts[i]:starts[i + 1]],
verbose=True)
for i in range(n_jobs))
# fit the base models
if self.verbose:
print('Parallel Score Prediction without Approximators '
'Total Time:', time.time() - start)