Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def _create_example(self):
channel_ids = [0, 1, 2, 3]
num_channels = 4
num_frames = 10000
sampling_frequency = 30000
X = np.random.normal(0, 1, (num_channels, num_frames))
geom = np.random.normal(0, 1, (num_channels, 2))
X = (X * 100).astype(int)
RX = se.NumpyRecordingExtractor(timeseries=X, sampling_frequency=sampling_frequency, geom=geom)
RX2 = se.NumpyRecordingExtractor(timeseries=X, sampling_frequency=sampling_frequency, geom=geom)
RX3 = se.NumpyRecordingExtractor(timeseries=X, sampling_frequency=sampling_frequency, geom=geom)
SX = se.NumpySortingExtractor()
spike_times = [200, 300, 400]
train1 = np.sort(np.rint(np.random.uniform(0, num_frames, spike_times[0])).astype(int))
SX.add_unit(unit_id=1, times=train1)
SX.add_unit(unit_id=2, times=np.sort(np.random.uniform(0, num_frames, spike_times[1])))
SX.add_unit(unit_id=3, times=np.sort(np.random.uniform(0, num_frames, spike_times[2])))
SX.set_unit_property(unit_id=1, property_name='stability', value=80)
SX.set_sampling_frequency(sampling_frequency)
SX2 = se.NumpySortingExtractor()
spike_times2 = [100, 150, 450]
train2 = np.rint(np.random.uniform(0, num_frames, spike_times2[0])).astype(int)
SX2.add_unit(unit_id=3, times=train2)
SX2.add_unit(unit_id=4, times=np.random.uniform(0, num_frames, spike_times2[1]))
SX2.add_unit(unit_id=5, times=np.random.uniform(0, num_frames, spike_times2[2]))
SX2.set_unit_property(unit_id=4, property_name='stability', value=80)
SX2.set_unit_spike_features(unit_id=3, feature_name='widths', value=np.asarray([3] * spike_times2[0]))
def setUp(self):
M = 32
N = 10000
sampling_frequency = 30000
X = np.random.normal(0, 1, (M, N))
self._X = X
self._sampling_frequency = sampling_frequency
self.RX = se.NumpyRecordingExtractor(timeseries=X, sampling_frequency=sampling_frequency)
self.test_dir = tempfile.mkdtemp()
def toy_example(duration=10, num_channels=4, sampling_frequency=30000.0, K=10, seed=None):
upsamplefac = 13
waveforms, geom = synthesize_random_waveforms(K=K, M=num_channels, average_peak_amplitude=-100,
upsamplefac=upsamplefac, seed=seed)
times, labels = synthesize_random_firings(K=K, duration=duration, sampling_frequency=sampling_frequency, seed=seed)
labels = labels.astype(np.int64)
SX = se.NumpySortingExtractor()
SX.set_times_labels(times, labels)
X = synthesize_timeseries(sorting=SX, waveforms=waveforms, noise_level=10, sampling_frequency=sampling_frequency, duration=duration,
waveform_upsamplefac=upsamplefac, seed=seed)
SX.set_sampling_frequency(sampling_frequency)
RX = se.NumpyRecordingExtractor(timeseries=X, sampling_frequency=sampling_frequency, geom=geom)
return (RX, SX)