Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def test_two_random_same_seed():
state = np.random.randint(100)
s1 = sparse.random((2, 3, 4), 0.3, random_state=state)
s2 = sparse.random((2, 3, 4), 0.3, random_state=state)
assert_eq(s1, s2)
def test_elemwise_binary(func, shape):
xs = sparse.random(shape, density=0.5)
ys = sparse.random(shape, density=0.5)
x = xs.todense()
y = ys.todense()
assert_eq(func(xs, ys), func(x, y))
def test_prod_along_axis():
s1 = sparse.random((10, 10), density=0.1)
s2 = 1 - s1
x1 = s1.todense()
x2 = s2.todense()
assert_eq(s1.prod(axis=0), x1.prod(axis=0))
assert_eq(s2.prod(axis=0), x2.prod(axis=0))
def test_elemwise_binary_inplace(func, shape):
xs = sparse.random(shape, density=0.5)
ys = sparse.random(shape, density=0.5)
x = xs.todense()
y = ys.todense()
xs = func(xs, ys)
x = func(x, y)
assert_eq(xs, x)
def test_nonzero_outout_fv_ufunc(func):
xs = sparse.random((2, 3, 4), density=0.5)
ys = sparse.random((2, 3, 4), density=0.5)
x = xs.todense()
y = ys.todense()
f = func(x, y)
fs = func(xs, ys)
assert isinstance(fs, COO)
assert_eq(f, fs)
def test_large_reshape():
n = 100
m = 10
row = np.arange(n, dtype=np.uint16) # np.random.randint(0, n, size=n, dtype=np.uint16)
col = row % m # np.random.randint(0, m, size=n, dtype=np.uint16)
data = np.ones(n, dtype=np.uint8)
x = COO((data, (row, col)), sorted=True, has_duplicates=False)
assert_eq(x, x.reshape(x.shape))
def test_nan_reductions(reduction, axis, keepdims, fraction):
s = sparse.random((2, 3, 4), data_rvs=random_value_array(np.nan, fraction),
density=.25)
x = s.todense()
expected = getattr(np, reduction)(x, axis=axis, keepdims=keepdims)
actual = getattr(sparse, reduction)(s, axis=axis, keepdims=keepdims)
assert_eq(expected, actual)
def test_convert_to_numpy():
s = sparse.random((2, 3, 4), 0.5, format='dok')
x = s.todense()
assert_eq(x, s)
def test_elemwise_scalar(func, scalar, convert_to_np_number):
xs = sparse.random((2, 3, 4), density=0.5)
if convert_to_np_number:
scalar = np.float32(scalar)
y = scalar
x = xs.todense()
fs = func(xs, y)
assert isinstance(fs, COO)
assert xs.nnz >= fs.nnz
assert_eq(fs, func(x, y))
def test_transpose(axis):
x = sparse.random((2, 3, 4), density=.25)
y = x.todense()
xx = x.transpose(axis)
yy = y.transpose(axis)
assert_eq(xx, yy)