Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
one = nn.Linear(util.prod(insize), arg.hidden)
two = nn.Linear(arg.hidden, numcls)
model = nn.Sequential(
util.Flatten(),
one, nn.Sigmoid(),
two, nn.Softmax()
)
elif arg.method == 'nas':
rng = (
min(arg.hidden, arg.range), 1,
arg.range, arg.range)
one = NASLayer(
in_size=insize, out_size=(arg.hidden,), k=points,
fix_values=arg.fix_values,
gadditional=arg.gadditional, radditional=arg.radditional, region=rng, has_bias=True,
min_sigma=arg.min_sigma
)
two = nn.Linear(arg.hidden, numcls)
model = nn.Sequential(
one, nn.Sigmoid(),
two, nn.Softmax()
)
elif arg.method == 'nas-temp':
"""
Templated NAS model. Fixed in one dimension
"""
one, nn.Sigmoid(),
two, nn.Softmax()
)
elif arg.method == 'nas-temp':
"""
Templated NAS model. Fixed in one dimension
"""
rng = (arg.range, arg.range)
h, c = arg.hidden, arg.control+1
template = torch.arange(h, dtype=torch.long)[:, None].expand(h, c).contiguous().view(h*c, 1)
template = torch.cat([template, torch.zeros(h*c, 3, dtype=torch.long)], dim=1)
one = NASLayer(
in_size=insize, out_size=(arg.hidden,), k=points,
gadditional=arg.gadditional, radditional=arg.radditional, region=rng, has_bias=True,
fix_values=arg.fix_values,
min_sigma=arg.min_sigma,
template=template,
learn_cols=(2, 3),
chunk_size=c
)
two = nn.Linear(arg.hidden, numcls)
model = nn.Sequential(
one, nn.Sigmoid(),
two, nn.Softmax()
)
in_size=(h1,), out_size=(h2,), k=h2*c,
gadditional=arg.gadditional[1], radditional=arg.radditional[1], region=rng, has_bias=True,
fix_values=arg.fix_values,
min_sigma=arg.min_sigma,
template=template,
learn_cols=(1,),
chunk_size=c
)
rng = getrng(arg.range[2], (h2, ))
c = arg.k[2]
template = torch.arange(numcls, dtype=torch.long)[:, None].expand(numcls, c).contiguous().view(numcls * c, 1)
template = torch.cat([template, torch.zeros(numcls*c, 1, dtype=torch.long)], dim=1)
three = NASLayer(
in_size=(h2,), out_size=(numcls,), k=numcls*c,
gadditional=arg.gadditional[2], radditional=arg.radditional[2], region=rng, has_bias=True,
fix_values=arg.fix_values,
min_sigma=arg.min_sigma,
template=template,
learn_cols=(1,),
chunk_size=c
)
model = nn.Sequential(
one, nn.Sigmoid(),
two, nn.Sigmoid(),
three, nn.Softmax(),
)
elif arg.method == 'nas-conv':
"""
in_size=insize, out_size=(h1,), k=h1*c,
gadditional=arg.gadditional[0], radditional=arg.radditional[0], region=rng, has_bias=True,
fix_values=arg.fix_values,
min_sigma=arg.min_sigma,
template=template,
learn_cols=(1, 2, 3) if insize[0] > 1 else (2, 3),
chunk_size=c
)
rng = getrng(arg.range[1], (h1, ))
c = arg.k[1]
template = torch.arange(h2, dtype=torch.long)[:, None].expand(h2, c).contiguous().view(h2 * c, 1)
template = torch.cat([template, torch.zeros(h2*c, 1, dtype=torch.long)], dim=1)
two = NASLayer(
in_size=(h1,), out_size=(h2,), k=h2*c,
gadditional=arg.gadditional[1], radditional=arg.radditional[1], region=rng, has_bias=True,
fix_values=arg.fix_values,
min_sigma=arg.min_sigma,
template=template,
learn_cols=(1,),
chunk_size=c
)
rng = getrng(arg.range[2], (h2, ))
c = arg.k[2]
template = torch.arange(numcls, dtype=torch.long)[:, None].expand(numcls, c).contiguous().view(numcls * c, 1)
template = torch.cat([template, torch.zeros(numcls*c, 1, dtype=torch.long)], dim=1)
three = NASLayer(
c = arg.k[1]
two = NASLayer(
in_size=(h1,), out_size=(h2,), k=h2*c,
gadditional=arg.gadditional[1], radditional=arg.radditional[1], region=rng, has_bias=True,
fix_values=arg.fix_values,
min_sigma=arg.min_sigma,
template=None,
learn_cols=None,
chunk_size=c
)
rng = getrng(arg.range[2], (numcls, h2))
c = arg.k[2]
three = NASLayer(
in_size=(h2,), out_size=(numcls,), k=numcls*c,
gadditional=arg.gadditional[2], radditional=arg.radditional[2], region=rng, has_bias=True,
fix_values=arg.fix_values,
min_sigma=arg.min_sigma,
template=None,
learn_cols=None,
chunk_size=c
)
model = nn.Sequential(
one, nn.Sigmoid(),
two, nn.Sigmoid(),
three, nn.Softmax(),
)
elif arg.method == 'nas-temp':