Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
ari = trvae.mt.ari(mmd_latent, cell_type_key)
nmi = trvae.mt.nmi(mmd_latent, cell_type_key)
_, rec, mmd = network.get_reconstruction_error(net_valid_adata, condition_key)
row = [alpha, eta, z_dim, mmd_dim, beta, asw, nmi, ari, ebm, rec, mmd]
with open(f"./{filename}.csv", 'a') as file:
writer = csv.writer(file)
writer.writerow(row)
file.close()
os.makedirs(f"./results/Monitor/{filename}/", exist_ok=True)
sc.settings.figdir = f"./results/Monitor/{filename}/"
sc.pp.neighbors(mmd_latent)
sc.tl.umap(mmd_latent)
sc.pl.umap(mmd_latent, color=condition_key, frameon=False, title="", save=f"_trVAE_MMD_condition_{beta}.pdf")
sc.pl.umap(mmd_latent, color=cell_type_key, frameon=False, title="", save=f"_trVAE_MMD_cell_type_{beta}.pdf")
K.clear_session()
color = ['condition']
sc.pp.neighbors(data)
sc.tl.umap(data)
sc.pl.umap(data, color=color,
save=f'_{data_name}_train_data',
show=False)
sc.pp.neighbors(latent_with_true_labels)
sc.tl.umap(latent_with_true_labels)
sc.pl.umap(latent_with_true_labels, color=color,
save=f"_{data_name}_latent_with_true_labels",
show=False)
sc.pp.neighbors(latent_with_fake_labels)
sc.tl.umap(latent_with_fake_labels)
sc.pl.umap(latent_with_fake_labels, color=color,
save=f"_{data_name}__latent_with_fake_labels",
show=False)
sc.pp.neighbors(mmd_latent_with_true_labels)
sc.tl.umap(mmd_latent_with_true_labels)
sc.pl.umap(mmd_latent_with_true_labels, color=color,
save=f"_{data_name}_mmd_latent_with_true_labels",
show=False)
sc.pp.neighbors(mmd_latent_with_fake_labels)
sc.tl.umap(mmd_latent_with_fake_labels)
sc.pl.umap(mmd_latent_with_fake_labels, color=color,
save=f"_{data_name}_mmd_latent_with_fake_labels",
show=False)
plt.close("all")
network.restore_model()
if sparse.issparse(data.X):
data.X = data.X.A
feed_data = data.X
latent = network.to_latent(feed_data)
latent = sc.AnnData(X=latent)
latent.obs[cell_type_key] = data.obs[cell_type_key].values
color = [cell_type_key]
sc.pp.neighbors(train_data)
sc.tl.umap(train_data)
sc.pl.umap(train_data, color=color,
save=f'_{data_name}_train_data.pdf',
show=False)
sc.pp.neighbors(latent)
sc.tl.umap(latent)
sc.pl.umap(latent, color=color,
save=f"_{data_name}_latent.pdf",
show=False)
plt.close("all")
fake_labels = np.ones((len(unperturbed_data), 1))
pred = network.predict(data=unperturbed_data, encoder_labels=true_labels, decoder_labels=fake_labels)
pred_adata = anndata.AnnData(pred, obs={condition_key: ["pred"] * len(pred)},
var={"var_names": cell_type_data.var_names})
all_adata = cell_type_data.copy().concatenate(pred_adata.copy())
scgen.plotting.reg_mean_plot(all_adata, condition_key=condition_key,
axis_keys={"x": ctrl_key, "y": "pred", "y1": stim_key},
path_to_save=f"./figures/reg_mean_{z_dim}.pdf")
scgen.plotting.reg_var_plot(all_adata, condition_key=condition_key,
axis_keys={"x": ctrl_key, "y": "pred", 'y1': stim_key},
path_to_save=f"./figures/reg_var_{z_dim}.pdf")
sc.pp.neighbors(all_adata)
sc.tl.umap(all_adata)
sc.pl.umap(all_adata, color=condition_key,
save="pred")
# sc.pl.violin(all_adata, keys=diff_genes.tolist()[0], groupby=condition_key,
# save=f"_{z_dim}_{diff_genes.tolist()[0]}")
os.chdir("../../../")
show=False)
sc.pp.neighbors(latent_with_fake_labels)
sc.tl.umap(latent_with_fake_labels)
sc.pl.umap(latent_with_fake_labels, color=color,
save=f"_{data_name}__latent_with_fake_labels",
show=False)
sc.pp.neighbors(mmd_latent_with_true_labels)
sc.tl.umap(mmd_latent_with_true_labels)
sc.pl.umap(mmd_latent_with_true_labels, color=color,
save=f"_{data_name}_mmd_latent_with_true_labels",
show=False)
sc.pp.neighbors(mmd_latent_with_fake_labels)
sc.tl.umap(mmd_latent_with_fake_labels)
sc.pl.umap(mmd_latent_with_fake_labels, color=color,
save=f"_{data_name}_mmd_latent_with_fake_labels",
show=False)
plt.close("all")
# mmd_latent_with_true_labels.obs[cell_type_key] = data.obs[cell_type_key].values
mmd_latent_with_fake_labels = sc.AnnData(X=mmd_latent_with_fake_labels)
mmd_latent_with_fake_labels.obs['condition'] = data.obs['condition'].values
# mmd_latent_with_fake_labels.obs[cell_type_key] = data.obs[cell_type_key].values
color = ['condition']
sc.pp.neighbors(data)
sc.tl.umap(data)
sc.pl.umap(data, color=color,
save=f'_{data_name}_train_data',
show=False)
sc.pp.neighbors(latent_with_true_labels)
sc.tl.umap(latent_with_true_labels)
sc.pl.umap(latent_with_true_labels, color=color,
save=f"_{data_name}_latent_with_true_labels",
show=False)
sc.pp.neighbors(latent_with_fake_labels)
sc.tl.umap(latent_with_fake_labels)
sc.pl.umap(latent_with_fake_labels, color=color,
save=f"_{data_name}__latent_with_fake_labels",
show=False)
sc.pp.neighbors(mmd_latent_with_true_labels)
sc.tl.umap(mmd_latent_with_true_labels)
sc.pl.umap(mmd_latent_with_true_labels, color=color,
save=f"_{data_name}_mmd_latent_with_true_labels",
show=False)
latent_with_true_labels = network.to_latent(net_train_data.X, labels=true_labels)
latent_with_true_labels = sc.AnnData(X=latent_with_true_labels,
obs={condition_key: net_train_data.obs[condition_key].tolist(),
cell_type_key: net_train_data.obs[cell_type_key].tolist()})
sc.pp.neighbors(latent_with_true_labels)
sc.tl.umap(latent_with_true_labels)
sc.pl.umap(latent_with_true_labels, color=[condition_key, cell_type_key],
save=f"_latent_true_labels_{z_dim}",
show=False)
latent_with_fake_labels = network.to_latent(net_train_data.X, fake_labels)
latent_with_fake_labels = sc.AnnData(X=latent_with_fake_labels,
obs={condition_key: net_train_data.obs[condition_key].tolist(),
cell_type_key: net_train_data.obs[cell_type_key].tolist()})
sc.pp.neighbors(latent_with_fake_labels)
sc.tl.umap(latent_with_fake_labels)
sc.pl.umap(latent_with_fake_labels, color=[condition_key, cell_type_key],
save=f"_latent_fake_labels_{z_dim}",
show=False)
mmd_with_true_labels = network.to_mmd_layer(network.cvae_model, net_train_data.X,
encoder_labels=true_labels, feed_fake=False)
mmd_with_true_labels = sc.AnnData(X=mmd_with_true_labels,
obs={condition_key: net_train_data.obs[condition_key].tolist(),
cell_type_key: net_train_data.obs[cell_type_key].tolist()})
sc.pp.neighbors(mmd_with_true_labels)
sc.tl.umap(mmd_with_true_labels)
sc.pl.umap(mmd_with_true_labels, color=[condition_key, cell_type_key],
save=f"_mmd_true_labels_{z_dim}",
show=False)
mmd_with_fake_labels = network.to_mmd_layer(network.cvae_model, net_train_data.X,