Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
pred = network.predict(data=unperturbed_data, encoder_labels=true_labels, decoder_labels=fake_labels)
pred_adata = anndata.AnnData(pred, obs={condition_key: ["pred"] * len(pred)},
var={"var_names": cell_type_data.var_names})
all_adata = cell_type_data.concatenate(pred_adata)
scgen.plotting.reg_mean_plot(all_adata, condition_key=condition_key,
axis_keys={"x": ctrl_key, "y": stim_key, "y1": "pred"},
gene_list=diff_genes,
path_to_save=f"./figures/reg_mean_{z_dim}.pdf")
scgen.plotting.reg_var_plot(all_adata, condition_key=condition_key,
axis_keys={"x": ctrl_key, "y": stim_key, 'y1': "pred"},
gene_list=diff_genes,
path_to_save=f"./figures/reg_var_{z_dim}.pdf")
sc.pp.neighbors(all_adata)
sc.tl.umap(all_adata)
sc.pl.umap(all_adata, color=condition_key,
save="pred")
sc.pl.violin(all_adata, keys=diff_genes.tolist()[0], groupby=condition_key,
save=f"_{z_dim}_{diff_genes.tolist()[0]}")
os.chdir("../../../")
latent_with_fake_labels = sc.AnnData(X=latent_with_fake_labels)
latent_with_fake_labels.obs['condition'] = data.obs['condition'].values
latent_with_fake_labels.obs[cell_type_key] = data.obs[cell_type_key].values
mmd_latent_with_true_labels = sc.AnnData(X=mmd_latent_with_true_labels)
mmd_latent_with_true_labels.obs['condition'] = data.obs['condition'].values
mmd_latent_with_true_labels.obs[cell_type_key] = data.obs[cell_type_key].values
mmd_latent_with_fake_labels = sc.AnnData(X=mmd_latent_with_fake_labels)
mmd_latent_with_fake_labels.obs['condition'] = data.obs['condition'].values
mmd_latent_with_fake_labels.obs[cell_type_key] = data.obs[cell_type_key].values
color = ['condition', cell_type_key]
sc.pp.neighbors(train_data)
sc.tl.umap(train_data)
sc.pl.umap(train_data, color=color,
save=f'_{data_name}_{cell_type}_train_data',
show=False)
sc.pp.neighbors(latent_with_true_labels)
sc.tl.umap(latent_with_true_labels)
sc.pl.umap(latent_with_true_labels, color=color,
save=f"_{data_name}_{cell_type}_latent_with_true_labels",
show=False)
sc.pp.neighbors(latent_with_fake_labels)
sc.tl.umap(latent_with_fake_labels)
sc.pl.umap(latent_with_fake_labels, color=color,
save=f"_{data_name}_{cell_type}_latent_with_fake_labels",
show=False)
latent_with_fake_labels.obs['labels'] = pd.Categorical(train_data.obs['labels'].values)
mmd_latent_with_true_labels.obs['labels'] = pd.Categorical(train_data.obs['labels'].values)
mmd_latent_with_fake_labels.obs['labels'] = pd.Categorical(train_data.obs['labels'].values)
color = ['condition', 'labels']
else:
color = ['condition']
sc.pp.neighbors(train_data)
sc.tl.umap(train_data)
sc.pl.umap(train_data, color=color,
save=f'_{data_name}_train_data.png',
show=False,
wspace=0.5)
sc.pp.neighbors(latent_with_true_labels)
sc.tl.umap(latent_with_true_labels)
sc.pl.umap(latent_with_true_labels, color=color,
save=f"_{data_name}_latent_with_true_labels.png",
wspace=0.5,
show=False)
sc.pp.neighbors(latent_with_fake_labels)
sc.tl.umap(latent_with_fake_labels)
sc.pl.umap(latent_with_fake_labels, color=color,
save=f"_{data_name}_latent_with_fake_labels.png",
wspace=0.5,
show=False)
sc.pp.neighbors(mmd_latent_with_true_labels)
sc.tl.umap(mmd_latent_with_true_labels)
sc.pl.umap(mmd_latent_with_true_labels, color=color,
latent_with_true_labels.obs['condition'] = data.obs['condition'].values
latent_with_true_labels.obs[cell_type_key] = data.obs[cell_type_key].values
latent_with_fake_labels = sc.AnnData(X=latent_with_fake_labels)
latent_with_fake_labels.obs['condition'] = data.obs['condition'].values
latent_with_fake_labels.obs[cell_type_key] = data.obs[cell_type_key].values
color = ['condition', cell_type_key]
sc.pp.neighbors(train_data)
sc.tl.umap(train_data)
sc.pl.umap(train_data, color=color,
save=f'_{data_name}_{cell_type}_train_data',
show=False)
sc.pp.neighbors(latent_with_true_labels)
sc.tl.umap(latent_with_true_labels)
sc.pl.umap(latent_with_true_labels, color=color,
save=f"_{data_name}_{cell_type}_latent_with_true_labels",
show=False)
sc.pp.neighbors(latent_with_fake_labels)
sc.tl.umap(latent_with_fake_labels)
sc.pl.umap(latent_with_fake_labels, color=color,
save=f"_{data_name}_{cell_type}_latent_with_fake_labels",
show=False)
sc.pl.violin(cell_type_adata, keys=top_100_genes[0], groupby='condition',
save=f"_{data_name}_{cell_type}_{top_100_genes[0]}",
show=False)
plt.close("all")
save=f"_{data_name}_{cell_type}_latent_with_true_labels",
show=False)
sc.pp.neighbors(latent_with_fake_labels)
sc.tl.umap(latent_with_fake_labels)
sc.pl.umap(latent_with_fake_labels, color=color,
save=f"_{data_name}_{cell_type}_latent_with_fake_labels",
show=False)
sc.pp.neighbors(mmd_latent_with_true_labels)
sc.tl.umap(mmd_latent_with_true_labels)
sc.pl.umap(mmd_latent_with_true_labels, color=color,
save=f"_{data_name}_{cell_type}_mmd_latent_with_true_labels",
show=False)
sc.pp.neighbors(mmd_latent_with_fake_labels)
sc.tl.umap(mmd_latent_with_fake_labels)
sc.pl.umap(mmd_latent_with_fake_labels, color=color,
save=f"_{data_name}_{cell_type}_mmd_latent_with_fake_labels",
show=False)
sc.pl.violin(cell_type_adata, keys=top_100_genes[0], groupby='condition',
save=f"_{data_name}_{cell_type}_{top_100_genes[0]}",
show=False)
plt.close("all")
mmd_latent_with_true_labels.obs['condition'] = data.obs['condition'].values
# mmd_latent_with_true_labels.obs[cell_type_key] = data.obs[cell_type_key].values
mmd_latent_with_fake_labels = sc.AnnData(X=mmd_latent_with_fake_labels)
mmd_latent_with_fake_labels.obs['condition'] = data.obs['condition'].values
# mmd_latent_with_fake_labels.obs[cell_type_key] = data.obs[cell_type_key].values
color = ['condition']
sc.pp.neighbors(data)
sc.tl.umap(data)
sc.pl.umap(data, color=color,
save=f'_{data_name}_train_data',
show=False)
sc.pp.neighbors(latent_with_true_labels)
sc.tl.umap(latent_with_true_labels)
sc.pl.umap(latent_with_true_labels, color=color,
save=f"_{data_name}_latent_with_true_labels",
show=False)
sc.pp.neighbors(latent_with_fake_labels)
sc.tl.umap(latent_with_fake_labels)
sc.pl.umap(latent_with_fake_labels, color=color,
save=f"_{data_name}__latent_with_fake_labels",
show=False)
sc.pp.neighbors(mmd_latent_with_true_labels)
sc.tl.umap(mmd_latent_with_true_labels)
sc.pl.umap(mmd_latent_with_true_labels, color=color,
save=f"_{data_name}_mmd_latent_with_true_labels",
show=False)
sc.tl.umap(mmd_latent_with_fake_labels[i])
sc.pl.umap(mmd_latent_with_fake_labels[i], color=color,
save=f"_{data_name}_latent_with_fake_labels_{i}",
show=False,
wspace=0.15,
frameon=False)
sc.pp.neighbors(train_data)
sc.tl.umap(train_data)
sc.pl.umap(train_data, color=color,
save=f'_{data_name}_{cell_type}_train_data',
show=False,
wspace=0.15,
frameon=False)
sc.pp.neighbors(latent_with_true_labels)
sc.tl.umap(latent_with_true_labels)
sc.pl.umap(latent_with_true_labels, color=color,
save=f"_{data_name}_{cell_type}_latent_with_true_labels",
show=False,
wspace=0.15,
frameon=False)
sc.pp.neighbors(mmd_latent_with_true_labels)
sc.tl.umap(mmd_latent_with_true_labels)
sc.pl.umap(mmd_latent_with_true_labels, color=color,
save=f"_{data_name}_{cell_type}_mmd_latent_with_true_labels",
show=False,
wspace=0.15,
frameon=False)
if gene_list is not None:
for target_condition in target_keys:
save=f"_{data_name}_latent_with_true_labels",
show=False)
sc.pp.neighbors(latent_with_fake_labels)
sc.tl.umap(latent_with_fake_labels)
sc.pl.umap(latent_with_fake_labels, color=color,
save=f"_{data_name}__latent_with_fake_labels",
show=False)
sc.pp.neighbors(mmd_latent_with_true_labels)
sc.tl.umap(mmd_latent_with_true_labels)
sc.pl.umap(mmd_latent_with_true_labels, color=color,
save=f"_{data_name}_mmd_latent_with_true_labels",
show=False)
sc.pp.neighbors(mmd_latent_with_fake_labels)
sc.tl.umap(mmd_latent_with_fake_labels)
sc.pl.umap(mmd_latent_with_fake_labels, color=color,
save=f"_{data_name}_mmd_latent_with_fake_labels",
show=False)
plt.close("all")
if 'fit_likelihood' in adata.var.keys() and min_likelihood is not None:
tmp_filter &= (adata.var['fit_likelihood'] > min_likelihood)
from .. import AnnData
vdata = AnnData(adata.layers[vkey][:, tmp_filter])
vdata.obs = adata.obs.copy()
vdata.var = adata.var[tmp_filter].copy()
if 'highly_variable' in vdata.var.keys():
vdata.var['highly_variable'] = np.array(vdata.var['highly_variable'], dtype=bool)
import scanpy as sc
logg.switch_verbosity('off', module='scanpy')
sc.pp.pca(vdata, n_comps=20, svd_solver='arpack')
sc.pp.neighbors(vdata, n_pcs=20)
sc.tl.louvain(vdata, resolution=.7 if resolution is None else resolution)
logg.switch_verbosity('on', module='scanpy')
if sort_by == 'velocity_pseudotime' and sort_by not in adata.obs.keys():
velocity_pseudotime(adata, vkey=vkey)
if sort_by in vdata.obs.keys():
vc = vdata.obs['louvain']
vc_cats = vc.cat.categories
mean_times = [np.mean(vdata.obs[sort_by][vc == cat]) for cat in vc_cats]
vdata.obs['louvain'].cat.reorder_categories(vc_cats[np.argsort(mean_times)], inplace=True)
if isinstance(match_with, str) and match_with in adata.obs.keys():
from .utils import most_common_in_list
vc = vdata.obs['louvain']
cats_nums = {cat: 0 for cat in adata.obs[match_with].cat.categories}
for i, cat in enumerate(vc.cat.categories):
def _compute_neighbors(self, aData, kValue):
self.kValue = kValue
if self.parameters['use_PCs']:
sc.pp.neighbors(aData, n_neighbors=int(kValue),
n_pcs=self.pcsToUse)
else:
sc.pp.neighbors(aData, n_neighbors=int(kValue), n_pcs=0)
aData.uns['neighbors']['connectivities'] =\
scanpy_helpers.neighbor_graph(
scanpy_helpers.jaccard_kernel,
aData.uns['neighbors']['connectivities'])
return aData