How to use the sagemaker.amazon.hyperparameter.Hyperparameter function in sagemaker

To help you get started, we’ve selected a few sagemaker examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github aws / sagemaker-python-sdk / src / sagemaker / amazon / object2vec.py View on Github external
val_list = [s.strip() for s in value.split(",")]
        return set(val_list).issubset(valid_superset)

    return validate


class Object2Vec(AmazonAlgorithmEstimatorBase):
    """Placeholder docstring"""

    repo_name = "object2vec"
    repo_version = 1
    MINI_BATCH_SIZE = 32

    enc_dim = hp("enc_dim", (ge(4), le(10000)), "An integer in [4, 10000]", int)
    mini_batch_size = hp("mini_batch_size", (ge(1), le(10000)), "An integer in [1, 10000]", int)
    epochs = hp("epochs", (ge(1), le(100)), "An integer in [1, 100]", int)
    early_stopping_patience = hp(
        "early_stopping_patience", (ge(1), le(5)), "An integer in [1, 5]", int
    )
    early_stopping_tolerance = hp(
        "early_stopping_tolerance", (ge(1e-06), le(0.1)), "A float in [1e-06, 0.1]", float
    )
    dropout = hp("dropout", (ge(0.0), le(1.0)), "A float in [0.0, 1.0]", float)
    weight_decay = hp("weight_decay", (ge(0.0), le(10000.0)), "A float in [0.0, 10000.0]", float)
    bucket_width = hp("bucket_width", (ge(0), le(100)), "An integer in [0, 100]", int)
    num_classes = hp("num_classes", (ge(2), le(30)), "An integer in [2, 30]", int)
    mlp_layers = hp("mlp_layers", (ge(1), le(10)), "An integer in [1, 10]", int)
    mlp_dim = hp("mlp_dim", (ge(2), le(10000)), "An integer in [2, 10000]", int)
    mlp_activation = hp(
        "mlp_activation", isin("tanh", "relu", "linear"), 'One of "tanh", "relu", "linear"', str
    )
    output_layer = hp(
github aws / sagemaker-python-sdk / src / sagemaker / amazon / object2vec.py View on Github external
enc_dim = hp("enc_dim", (ge(4), le(10000)), "An integer in [4, 10000]", int)
    mini_batch_size = hp("mini_batch_size", (ge(1), le(10000)), "An integer in [1, 10000]", int)
    epochs = hp("epochs", (ge(1), le(100)), "An integer in [1, 100]", int)
    early_stopping_patience = hp(
        "early_stopping_patience", (ge(1), le(5)), "An integer in [1, 5]", int
    )
    early_stopping_tolerance = hp(
        "early_stopping_tolerance", (ge(1e-06), le(0.1)), "A float in [1e-06, 0.1]", float
    )
    dropout = hp("dropout", (ge(0.0), le(1.0)), "A float in [0.0, 1.0]", float)
    weight_decay = hp("weight_decay", (ge(0.0), le(10000.0)), "A float in [0.0, 10000.0]", float)
    bucket_width = hp("bucket_width", (ge(0), le(100)), "An integer in [0, 100]", int)
    num_classes = hp("num_classes", (ge(2), le(30)), "An integer in [2, 30]", int)
    mlp_layers = hp("mlp_layers", (ge(1), le(10)), "An integer in [1, 10]", int)
    mlp_dim = hp("mlp_dim", (ge(2), le(10000)), "An integer in [2, 10000]", int)
    mlp_activation = hp(
        "mlp_activation", isin("tanh", "relu", "linear"), 'One of "tanh", "relu", "linear"', str
    )
    output_layer = hp(
        "output_layer",
        isin("softmax", "mean_squared_error"),
        'One of "softmax", "mean_squared_error"',
        str,
    )
    optimizer = hp(
        "optimizer",
        isin("adagrad", "adam", "rmsprop", "sgd", "adadelta"),
        'One of "adagrad", "adam", "rmsprop", "sgd", "adadelta"',
        str,
    )
    learning_rate = hp("learning_rate", (ge(1e-06), le(1.0)), "A float in [1e-06, 1.0]", float)
github aws / sagemaker-python-sdk / src / sagemaker / amazon / kmeans.py View on Github external
from sagemaker.predictor import RealTimePredictor
from sagemaker.model import Model
from sagemaker.session import Session
from sagemaker.vpc_utils import VPC_CONFIG_DEFAULT


class KMeans(AmazonAlgorithmEstimatorBase):
    """Placeholder docstring"""

    repo_name = "kmeans"
    repo_version = 1

    k = hp("k", gt(1), "An integer greater-than 1", int)
    init_method = hp("init_method", isin("random", "kmeans++"), 'One of "random", "kmeans++"', str)
    max_iterations = hp("local_lloyd_max_iter", gt(0), "An integer greater-than 0", int)
    tol = hp("local_lloyd_tol", (ge(0), le(1)), "An float in [0, 1]", float)
    num_trials = hp("local_lloyd_num_trials", gt(0), "An integer greater-than 0", int)
    local_init_method = hp(
        "local_lloyd_init_method", isin("random", "kmeans++"), 'One of "random", "kmeans++"', str
    )
    half_life_time_size = hp(
        "half_life_time_size", ge(0), "An integer greater-than-or-equal-to 0", int
    )
    epochs = hp("epochs", gt(0), "An integer greater-than 0", int)
    center_factor = hp("extra_center_factor", gt(0), "An integer greater-than 0", int)
    eval_metrics = hp(
        name="eval_metrics",
        validation_message='A comma separated list of "msd" or "ssd"',
        data_type=list,
    )

    def __init__(
github aws / sagemaker-python-sdk / src / sagemaker / amazon / kmeans.py View on Github external
class KMeans(AmazonAlgorithmEstimatorBase):
    """Placeholder docstring"""

    repo_name = "kmeans"
    repo_version = 1

    k = hp("k", gt(1), "An integer greater-than 1", int)
    init_method = hp("init_method", isin("random", "kmeans++"), 'One of "random", "kmeans++"', str)
    max_iterations = hp("local_lloyd_max_iter", gt(0), "An integer greater-than 0", int)
    tol = hp("local_lloyd_tol", (ge(0), le(1)), "An float in [0, 1]", float)
    num_trials = hp("local_lloyd_num_trials", gt(0), "An integer greater-than 0", int)
    local_init_method = hp(
        "local_lloyd_init_method", isin("random", "kmeans++"), 'One of "random", "kmeans++"', str
    )
    half_life_time_size = hp(
        "half_life_time_size", ge(0), "An integer greater-than-or-equal-to 0", int
    )
    epochs = hp("epochs", gt(0), "An integer greater-than 0", int)
    center_factor = hp("extra_center_factor", gt(0), "An integer greater-than 0", int)
    eval_metrics = hp(
        name="eval_metrics",
        validation_message='A comma separated list of "msd" or "ssd"',
        data_type=list,
    )

    def __init__(
        self,
        role,
        train_instance_count,
        train_instance_type,
        k,
github aws / sagemaker-python-sdk / src / sagemaker / amazon / knn.py View on Github external
dimension_reduction_type = hp(
        "dimension_reduction_type", isin("sign", "fjlt"), 'One of "sign" or "fjlt"', str
    )
    index_metric = hp(
        "index_metric",
        isin("COSINE", "INNER_PRODUCT", "L2"),
        'One of "COSINE", "INNER_PRODUCT", "L2"',
        str,
    )
    index_type = hp(
        "index_type",
        isin("faiss.Flat", "faiss.IVFFlat", "faiss.IVFPQ"),
        'One of "faiss.Flat", "faiss.IVFFlat", "faiss.IVFPQ"',
        str,
    )
    faiss_index_ivf_nlists = hp(
        "faiss_index_ivf_nlists", (), '"auto" or an integer greater than 0', str
    )
    faiss_index_pq_m = hp("faiss_index_pq_m", (ge(1)), "An integer greater than 0", int)

    def __init__(
        self,
        role,
        train_instance_count,
        train_instance_type,
        k,
        sample_size,
        predictor_type,
        dimension_reduction_type=None,
        dimension_reduction_target=None,
        index_type=None,
        index_metric=None,
github aws / sagemaker-python-sdk / src / sagemaker / amazon / factorization_machines.py View on Github external
repo_name = "factorization-machines"
    repo_version = 1

    num_factors = hp("num_factors", gt(0), "An integer greater than zero", int)
    predictor_type = hp(
        "predictor_type",
        isin("binary_classifier", "regressor"),
        'Value "binary_classifier" or "regressor"',
        str,
    )
    epochs = hp("epochs", gt(0), "An integer greater than 0", int)
    clip_gradient = hp("clip_gradient", (), "A float value", float)
    eps = hp("eps", (), "A float value", float)
    rescale_grad = hp("rescale_grad", (), "A float value", float)
    bias_lr = hp("bias_lr", ge(0), "A non-negative float", float)
    linear_lr = hp("linear_lr", ge(0), "A non-negative float", float)
    factors_lr = hp("factors_lr", ge(0), "A non-negative float", float)
    bias_wd = hp("bias_wd", ge(0), "A non-negative float", float)
    linear_wd = hp("linear_wd", ge(0), "A non-negative float", float)
    factors_wd = hp("factors_wd", ge(0), "A non-negative float", float)
    bias_init_method = hp(
        "bias_init_method",
        isin("normal", "uniform", "constant"),
        'Value "normal", "uniform" or "constant"',
        str,
    )
    bias_init_scale = hp("bias_init_scale", ge(0), "A non-negative float", float)
    bias_init_sigma = hp("bias_init_sigma", ge(0), "A non-negative float", float)
    bias_init_value = hp("bias_init_value", (), "A float value", float)
    linear_init_method = hp(
        "linear_init_method",
        isin("normal", "uniform", "constant"),
github aws / sagemaker-python-sdk / src / sagemaker / amazon / linear_learner.py View on Github external
"squared_loss",
            "absolute_loss",
            "hinge_loss",
            "eps_insensitive_squared_loss",
            "eps_insensitive_absolute_loss",
            "quantile_loss",
            "huber_loss",
            "softmax_loss",
            "auto",
        ),
        '"logistic", "squared_loss", "absolute_loss", "hinge_loss", "eps_insensitive_squared_loss",'
        ' "eps_insensitive_absolute_loss", "quantile_loss", "huber_loss", "softmax_loss" or "auto"',
        str,
    )
    wd = hp("wd", ge(0), "A float greater-than or equal to 0", float)
    l1 = hp("l1", ge(0), "A float greater-than or equal to 0", float)
    momentum = hp("momentum", (ge(0), lt(1)), "A float in [0,1)", float)
    learning_rate = hp("learning_rate", gt(0), "A float greater-than 0", float)
    beta_1 = hp("beta_1", (ge(0), lt(1)), "A float in [0,1)", float)
    beta_2 = hp("beta_2", (ge(0), lt(1)), "A float in [0,1)", float)
    bias_lr_mult = hp("bias_lr_mult", gt(0), "A float greater-than 0", float)
    bias_wd_mult = hp("bias_wd_mult", ge(0), "A float greater-than or equal to 0", float)
    use_lr_scheduler = hp("use_lr_scheduler", (), "A boolean", bool)
    lr_scheduler_step = hp("lr_scheduler_step", gt(0), "An integer greater-than 0", int)
    lr_scheduler_factor = hp("lr_scheduler_factor", (gt(0), lt(1)), "A float in (0,1)", float)
    lr_scheduler_minimum_lr = hp("lr_scheduler_minimum_lr", gt(0), "A float greater-than 0", float)
    normalize_data = hp("normalize_data", (), "A boolean", bool)
    normalize_label = hp("normalize_label", (), "A boolean", bool)
    unbias_data = hp("unbias_data", (), "A boolean", bool)
    unbias_label = hp("unbias_label", (), "A boolean", bool)
    num_point_for_scaler = hp("num_point_for_scaler", gt(0), "An integer greater-than 0", int)
    margin = hp("margin", ge(0), "A float greater-than or equal to 0", float)
github aws / sagemaker-python-sdk / src / sagemaker / amazon / ntm.py View on Github external
"encoder_layers_activation",
        isin("sigmoid", "tanh", "relu"),
        'One of "sigmoid", "tanh" or "relu"',
        str,
    )
    optimizer = hp(
        "optimizer",
        isin("adagrad", "adam", "rmsprop", "sgd", "adadelta"),
        'One of "adagrad", "adam", "rmsprop", "sgd" and "adadelta"',
        str,
    )
    tolerance = hp("tolerance", (ge(1e-6), le(0.1)), "A float in [1e-6, 0.1]", float)
    num_patience_epochs = hp("num_patience_epochs", (ge(1), le(10)), "An integer in [1, 10]", int)
    batch_norm = hp(name="batch_norm", validation_message="Value must be a boolean", data_type=bool)
    rescale_gradient = hp("rescale_gradient", (ge(1e-3), le(1.0)), "A float in [1e-3, 1.0]", float)
    clip_gradient = hp("clip_gradient", ge(1e-3), "A float greater equal to 1e-3", float)
    weight_decay = hp("weight_decay", (ge(0.0), le(1.0)), "A float in [0.0, 1.0]", float)
    learning_rate = hp("learning_rate", (ge(1e-6), le(1.0)), "A float in [1e-6, 1.0]", float)

    def __init__(
        self,
        role,
        train_instance_count,
        train_instance_type,
        num_topics,
        encoder_layers=None,
        epochs=None,
        encoder_layers_activation=None,
        optimizer=None,
        tolerance=None,
        num_patience_epochs=None,
        batch_norm=None,
github aws / sagemaker-python-sdk / src / sagemaker / amazon / object2vec.py View on Github external
mlp_activation = hp(
        "mlp_activation", isin("tanh", "relu", "linear"), 'One of "tanh", "relu", "linear"', str
    )
    output_layer = hp(
        "output_layer",
        isin("softmax", "mean_squared_error"),
        'One of "softmax", "mean_squared_error"',
        str,
    )
    optimizer = hp(
        "optimizer",
        isin("adagrad", "adam", "rmsprop", "sgd", "adadelta"),
        'One of "adagrad", "adam", "rmsprop", "sgd", "adadelta"',
        str,
    )
    learning_rate = hp("learning_rate", (ge(1e-06), le(1.0)), "A float in [1e-06, 1.0]", float)

    negative_sampling_rate = hp(
        "negative_sampling_rate", (ge(0), le(100)), "An integer in [0, 100]", int
    )
    comparator_list = hp(
        "comparator_list",
        _list_check_subset(["hadamard", "concat", "abs_diff"]),
        'Comma-separated of hadamard, concat, abs_diff. E.g. "hadamard,abs_diff"',
        str,
    )
    tied_token_embedding_weight = hp(
        "tied_token_embedding_weight", (), "Either True or False", bool
    )
    token_embedding_storage_type = hp(
        "token_embedding_storage_type",
        isin("dense", "row_sparse"),
github aws / sagemaker-python-sdk / src / sagemaker / amazon / object2vec.py View on Github external
)

    enc0_network = hp(
        "enc0_network",
        isin("hcnn", "bilstm", "pooled_embedding"),
        'One of "hcnn", "bilstm", "pooled_embedding"',
        str,
    )
    enc1_network = hp(
        "enc1_network",
        isin("hcnn", "bilstm", "pooled_embedding", "enc0"),
        'One of "hcnn", "bilstm", "pooled_embedding", "enc0"',
        str,
    )
    enc0_cnn_filter_width = hp("enc0_cnn_filter_width", (ge(1), le(9)), "An integer in [1, 9]", int)
    enc1_cnn_filter_width = hp("enc1_cnn_filter_width", (ge(1), le(9)), "An integer in [1, 9]", int)
    enc0_max_seq_len = hp("enc0_max_seq_len", (ge(1), le(5000)), "An integer in [1, 5000]", int)
    enc1_max_seq_len = hp("enc1_max_seq_len", (ge(1), le(5000)), "An integer in [1, 5000]", int)
    enc0_token_embedding_dim = hp(
        "enc0_token_embedding_dim", (ge(2), le(1000)), "An integer in [2, 1000]", int
    )
    enc1_token_embedding_dim = hp(
        "enc1_token_embedding_dim", (ge(2), le(1000)), "An integer in [2, 1000]", int
    )
    enc0_vocab_size = hp("enc0_vocab_size", (ge(2), le(3000000)), "An integer in [2, 3000000]", int)
    enc1_vocab_size = hp("enc1_vocab_size", (ge(2), le(3000000)), "An integer in [2, 3000000]", int)
    enc0_layers = hp("enc0_layers", (ge(1), le(4)), "An integer in [1, 4]", int)
    enc1_layers = hp("enc1_layers", (ge(1), le(4)), "An integer in [1, 4]", int)
    enc0_freeze_pretrained_embedding = hp(
        "enc0_freeze_pretrained_embedding", (), "Either True or False", bool
    )
    enc1_freeze_pretrained_embedding = hp(