How to use the sagemaker.Session function in sagemaker

To help you get started, we’ve selected a few sagemaker examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github aws / sagemaker-containers / test / __init__.py View on Github external
def sagemaker_session(region_name=DEFAULT_REGION):  # type: (str) -> sagemaker.Session
    return sagemaker.Session(boto3.Session(region_name=region_name))
github aws / sagemaker-python-sdk / tests / unit / test_session.py View on Github external
def test_get_caller_identity_arn_from_describe_notebook_instance(boto_session):
    sess = Session(boto_session)
    expected_role = "arn:aws:iam::369233609183:role/service-role/SageMakerRole-20171129T072388"
    sess.sagemaker_client.describe_notebook_instance.return_value = {"RoleArn": expected_role}

    actual = sess.get_caller_identity_arn()

    assert actual == expected_role
    sess.sagemaker_client.describe_notebook_instance.assert_called_once_with(
        NotebookInstanceName="SageMakerInstance"
    )
github aws / sagemaker-python-sdk / tests / unit / test_session.py View on Github external
def test_process(boto_session):
    session = Session(boto_session)

    process_request_args = {
        "inputs": [
            {
                "InputName": "input-1",
                "S3Input": {
                    "S3Uri": "mocked_s3_uri_from_upload_data",
                    "LocalPath": "/container/path/",
                    "S3DataType": "Archive",
                    "S3InputMode": "File",
                    "S3DownloadMode": "Continuous",
                    "S3DataDistributionType": "FullyReplicated",
                    "S3CompressionType": "None",
                },
            },
            {
github aws / sagemaker-python-sdk / tests / unit / test_session.py View on Github external
def test_delete_model(boto_session):
    sess = Session(boto_session)

    model_name = "my_model"
    sess.delete_model(model_name)

    boto_session.client().delete_model.assert_called_with(ModelName=model_name)
github aws / sagemaker-python-sdk / tests / unit / test_session.py View on Github external
def test_get_caller_identity_arn_from_an_user(boto_session):
    sess = Session(boto_session)
    arn = "arn:aws:iam::369233609183:user/mia"
    sess.boto_session.client("sts", endpoint_url=STS_ENDPOINT).get_caller_identity.return_value = {
        "Arn": arn
    }
    sess.boto_session.client("iam").get_role.return_value = {"Role": {"Arn": arn}}

    actual = sess.get_caller_identity_arn()
    assert actual == "arn:aws:iam::369233609183:user/mia"
github aws / sagemaker-python-sdk / tests / unit / test_upload_data.py View on Github external
def sagemaker_session():
    boto_mock = Mock(name="boto_session")
    ims = sagemaker.Session(boto_session=boto_mock)
    ims.default_bucket = Mock(name="default_bucket", return_value=BUCKET_NAME)
    return ims
github aws / sagemaker-python-sdk / tests / unit / test_endpoint_from_job.py View on Github external
def sagemaker_session():
    boto_mock = Mock(name="boto_session", region_name=REGION)
    ims = sagemaker.Session(sagemaker_client=Mock(name="sagemaker_client"), boto_session=boto_mock)
    ims.sagemaker_client.describe_training_job = Mock(
        name="describe_training_job", return_value=TRAINING_JOB_RESPONSE
    )

    ims.endpoint_from_model_data = Mock(
        "endpoint_from_model_data", return_value=ENDPOINT_FROM_MODEL_RETURNED_NAME
    )
    return ims
github aws / sagemaker-python-sdk / tests / unit / test_session.py View on Github external
def sagemaker_session_complete():
    boto_mock = Mock(name="boto_session")
    boto_mock.client("logs").describe_log_streams.return_value = DEFAULT_LOG_STREAMS
    boto_mock.client("logs").get_log_events.side_effect = DEFAULT_LOG_EVENTS
    ims = sagemaker.Session(boto_session=boto_mock, sagemaker_client=Mock())
    ims.sagemaker_client.describe_training_job.return_value = COMPLETED_DESCRIBE_JOB_RESULT
    ims.sagemaker_client.describe_transform_job.return_value = (
        COMPLETED_DESCRIBE_TRANSFORM_JOB_RESULT
    )
    return ims
github tn1031 / chainer-sagemaker-tools / sagemaker_tools / deploy_endpoint.py View on Github external
def deploy_endpoint(session, client, endpoint_name, setting, pytorch):
    sagemaker_session = sagemaker.Session(
        boto_session=session,
        sagemaker_client=client)

    conf = yaml.load(open(setting))

    model_args = conf['model']
    model_args['sagemaker_session'] = sagemaker_session
    model_args['name'] = endpoint_name + '-model-' + dt.now().strftime('%y%m%d%H%M')
    if pytorch:
        model = PyTorchModel(**model_args)
    else:
        model = ChainerModel(**model_args)

    deploy_args = conf['deploy']
    deploy_args['endpoint_name'] = endpoint_name
    model.deploy(**deploy_args)
github maru-labo / doodle / tools / train_aws.py View on Github external
def train(source_dir, data_path='doodle/data', training_steps=20000, evaluation_steps=2000,
      train_instance_type='local', train_instance_count=1, run_tensorboard_locally=True,
      uid=None, role=None, bucket=None, profile_name=None):
  assert os.path.exists(source_dir)
  boto_session = boto3.Session(profile_name=profile_name)
  session = sagemaker.Session(boto_session=boto_session)
  role   = role   if role   is not None else sagemaker.get_execution_role()
  bucket = bucket if bucket is not None else session.default_bucket()
  uid  = uid  if uid  is not None else uuid4()
  logger.debug(session.get_caller_identity_arn())
  role = session.expand_role(role)

  params = {
    'train_tfrecord_file': 'train.tfr',
    'test_tfrecord_file' : 'test.tfr',
    'samples_per_epoch'  : 700000,
    'save_summary_steps' : 100,
  }

  output_path   = 's3://{}/doodle/model/{}/export'.format(bucket, uid)
  checkpoint_path = 's3://{}/doodle/model/{}/ckpt'  .format(bucket, uid)
  code_location   = 's3://{}/doodle/model/{}/source'.format(bucket, uid)