Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def _request_export_info() -> Tuple[Text, Text, Text]:
"""Request file path and export stories & nlu data to that path"""
# export training data and quit
questions = questionary.form(
export_stories=questionary.text(
message="Export stories to (if file exists, this "
"will append the stories)",
default=PATHS["stories"]),
export_nlu=questionary.text(
message="Export NLU data to (if file exists, this will "
"merge learned data with previous training examples)",
default=PATHS["nlu"]),
export_domain=questionary.text(
message="Export domain file to (if file exists, this "
"will be overwritten)",
default=PATHS["domain"]),
)
answers = questions.ask()
if not answers:
sys.exit()
return (answers["export_stories"],
answers["export_nlu"],
answers["export_domain"])
async def _request_free_text_intent(sender_id: Text, endpoint: EndpointConfig) -> Text:
question = questionary.text(
message="Please type the intent name:",
validate=io_utils.not_empty_validator("Please enter an intent name"),
)
return await _ask_questions(question, sender_id, endpoint)
def get_cmd_input(button_question: questionary.Question) -> Text:
if button_question is not None:
response = rasa.cli.utils.payload_from_button_question(button_question)
else:
response = questionary.text(
"",
qmark="Your input ->",
style=Style([("qmark", "#b373d6"), ("", "#b373d6")]),
).ask()
if response is not None:
return response.strip()
def _request_export_info() -> Tuple[Text, Text, Text]:
"""Request file path and export stories & nlu data to that path"""
# export training data and quit
questions = questionary.form(
export_stories=questionary.text(
message="Export stories to (if file exists, this "
"will append the stories)",
default=PATHS["stories"],
validate=io_utils.file_type_validator(
[".md"],
"Please provide a valid export path for the stories, e.g. 'stories.md'.",
),
),
export_nlu=questionary.text(
message="Export NLU data to (if file exists, this will "
"merge learned data with previous training examples)",
default=PATHS["nlu"],
validate=io_utils.file_type_validator(
[".md", ".json"],
"Please provide a valid export path for the NLU data, e.g. 'nlu.md'.",
),
),
export_domain=questionary.text(
message="Export domain file to (if file exists, this "
"will be overwritten)",
default=PATHS["domain"],
validate=io_utils.file_type_validator(
[".yml", ".yaml"],
"Please provide a valid export path for the domain file, e.g. 'domain.yml'.",
),
def _get_debug_dataset_proportion():
debug_dataset_proportion = questionary.text(
message="Enter Proportion of dataset for debug: ", default="0.1"
).ask()
debug_dataset_proportion = float(debug_dataset_proportion)
return debug_dataset_proportion
def _papers_from_finder(self, state):
"Find papers using a fuzzy finder in the available records."
keywords = questionary.text(
'Find papers using keywords/authors/title:'
).ask()
if keywords is None:
return
paper_idx = self.as_data.fuzzy_find(keywords, exclude=self.train_idx)
# Get the (possibly) relevant papers.
choices = []
for idx in paper_idx:
choices.append(self.as_data.preview_record(idx,
automatic_width=True))
choices.extend([questionary.Separator(), "Return"])
# Stay in the same menu until no more options are left
def _get_char_start_token():
char_start_token = questionary.text(
message="Enter the start token to be used for characters", default=" "
).ask()
return char_start_token
def _request_free_text_intent(
sender_id: Text,
endpoint: EndpointConfig
) -> Text:
question = questionary.text("Please type the intent name")
return _ask_or_abort(question, sender_id, endpoint)
def configure_channel(channel):
from rasa_core.utils import print_error, print_success
import rasa_core.utils
credentials_file = questionary.text(
"Please enter a path where to store the credentials file",
default="credentials.yml").ask()
if channel == "facebook":
fb_config = questionary.form(
verify=questionary.text(
"Facebook verification string (choosen during "
"webhook creation)"),
secret=questionary.text(
"Facebook application secret"),
access_token=questionary.text(
"Facebook access token"),
).ask()
credentials = {
"verify": fb_config["verify"],
"secret": fb_config["secret"],
"page-access-token": fb_config["access_token"]}
rasa_core.utils.dump_obj_as_yaml_to_file(
credentials_file,
{"facebook": credentials}
)
print_success("Created facebook configuration and added it to '{}'."
"".format(os.path.abspath(credentials_file)))
else:
print_error("Pieee...Rumble...ERROR! Configuration of this channel "
def _request_export_info() -> Tuple[Text, Text, Text]:
"""Request file path and export stories & nlu data to that path"""
# export training data and quit
questions = questionary.form(
export_stories=questionary.text(
message="Export stories to (if file exists, this "
"will append the stories)",
default=PATHS["stories"],
validate=io_utils.file_type_validator(
[".md"],
"Please provide a valid export path for the stories, e.g. 'stories.md'.",
),
),
export_nlu=questionary.text(
message="Export NLU data to (if file exists, this will "
"merge learned data with previous training examples)",
default=PATHS["nlu"],
validate=io_utils.file_type_validator(
[".md", ".json"],
"Please provide a valid export path for the NLU data, e.g. 'nlu.md'.",
),