Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def _init_choices(self, choices):
# helper to convert from question format to internal format
self.choices = []
for i, c in enumerate(choices):
choice = Choice.build(c)
if self._is_selected(choice):
self.selected_options.append(choice.value)
if self.pointed_at is None and not choice.disabled:
# find the first (available) choice
self.pointed_at = i
self.choices.append(choice)
def _get_word_embedding_type():
embedding_type = questionary.select(
message="Chose one of the embeddings available: ",
choices=[
Choice(title="random", value="random"),
Choice(title="parscit", value="parscit"),
Choice(title="glove_6B_100", value="glove_6B_100"),
Choice(title="glove_6B_200", value="glove_6B_200"),
Choice(title="glove_6B_300", value="glove_6B_300"),
],
).ask()
return embedding_type
def create_new_dataset_interactive():
""" Interactively creates new dataset files loaded with all the functionality.
"""
msg_printer = wasabi.Printer()
dataset_name = questionary.text(
"Name of Dataset? [Please provide a valid python ClassName]",
qmark="?",
validate=is_valid_python_classname,
).ask()
dataset_type = questionary.select(
"Chose the type of dataset you are creating?",
choices=[
Choice(title="Classification", value="classification"),
Choice(title="Sequence Labeling", value="seq_labeling"),
],
default="classification",
).ask()
if dataset_type == "classification":
dataset_generator = ClassificationDatasetGenerator(dataset_name=dataset_name)
dataset_generator.generate()
def build(c: Union[Text, "Choice", Dict[Text, Any]]) -> "Choice":
"""Create a choice object from different representations."""
if isinstance(c, Choice):
return c
elif isinstance(c, str):
return Choice(c, c)
else:
return Choice(
c.get("name"),
c.get("value"),
c.get("disabled", None),
c.get("checked"),
c.get("key"),
)
if isinstance(c, Choice):
return c
elif isinstance(c, str):
return Choice(c, c)
else:
return Choice(
c.get("name"),
c.get("value"),
c.get("disabled", None),
c.get("checked"),
c.get("key"),
)
class Separator(Choice):
"""Used to space/separate choices group."""
default_separator = "-" * 15
def __init__(self, line: Optional[Text] = None):
"""Create a separator in a list.
Args:
line: Text to be displayed in the list, by default uses `---`.
"""
self.line = line or self.default_separator
super(Separator, self).__init__(self.line, None, "-")
class InquirerControl(FormattedTextControl):
def _get_vocab_pipes():
vocab_pipe = questionary.checkbox(
message="What batteries do you want with the dataset?",
choices=[
Choice(
title="word_vocab [Default] will always be included",
checked=True,
disabled=True,
value="word_vocab",
),
Choice(
title="char_vocab - Usually included if character embeddings are needed",
value="char_vocab",
),
],
).ask()
vocab_pipe.append("word_vocab")
return vocab_pipe
def _get_tokenizer_type():
tokenizer_type = questionary.select(
message="What is the default tokenization that you would want to use?: ",
choices=[
Choice(
title="Vanilla (sentences are separated by space to form words)",
value="vanilla",
),
Choice(title="Spacy tokenizer", value="spacy"),
],
default="vanilla",
).ask()
return tokenizer_type
def _get_word_embedding_type():
embedding_type = questionary.select(
message="Chose one of the embeddings available: ",
choices=[
Choice(title="random", value="random"),
Choice(title="parscit", value="parscit"),
Choice(title="glove_6B_100", value="glove_6B_100"),
Choice(title="glove_6B_200", value="glove_6B_200"),
Choice(title="glove_6B_300", value="glove_6B_300"),
],
).ask()
return embedding_type
def build(c: Union[Text, "Choice", Dict[Text, Any]]) -> "Choice":
"""Create a choice object from different representations."""
if isinstance(c, Choice):
return c
elif isinstance(c, str):
return Choice(c, c)
else:
return Choice(
c.get("name"),
c.get("value"),
c.get("disabled", None),
c.get("checked"),
c.get("key"),
)