Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def make_literal_input(self):
literal = inout.inputs.LiteralInput(
identifier="complexinput",
title='MyComplex',
data_type='string',
workdir=self.tmp_dir,
abstract="some description",
keywords=['kw1', 'kw2'],
metadata=[Metadata("special data")],
uoms=['metre', 'unity'],
min_occurs=2,
max_occurs=5,
mode=MODE.STRICT,
allowed_values=[AllowedValue(value='something'), AllowedValue(value='something else'), AnyValue()],
default="something else",
default_type=SOURCE_TYPE.DATA,
)
literal.data = 'something'
literal.uom = UOM('unity')
literal.as_reference = False
return literal
[Format('application/json'), Format('application/x-netcdf')],
abstract="Complex input abstract.", ),
BoundingBoxInput('bb_input', 'BoundingBox input title', ['EPSG:4326', ],
metadata=[Metadata('EPSG.io', 'http://epsg.io/'), ]),
]
outputs = [LiteralOutput('literal_output', 'Literal output title', 'boolean', 'Boolean output abstract.',),
ComplexOutput('complex_output', 'Complex output', [Format('text/plain'), ], ),
BoundingBoxOutput('bb_output', 'BoundingBox output title', ['EPSG:4326', ])]
super(DocExampleProcess, self).__init__(
self._handler,
identifier='doc_example_process_identifier',
title="Process title",
abstract="Multiline process abstract.",
version="4.0",
metadata=[Metadata('PyWPS docs', 'http://pywps.org'),
Metadata('NumPy docstring conventions',
'https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt')],
inputs=inputs,
outputs=outputs,
)
),
ComplexOutput('output_log', 'Logging information',
abstract="Collected logs during process run.",
as_reference=True,
supported_formats=[Format('text/plain')]
)
]
super(SDMcsvProcess, self).__init__(
self._handler,
identifier="sdm_csv",
title="Species distribution Model (GBIF-CSV table as input)",
version="0.10",
metadata=[
Metadata("LWF", "http://www.lwf.bayern.de/"),
Metadata(
"Doc",
"http://flyingpigeon.readthedocs.io/en/latest/descriptions/index.html#species-distribution-model"),
Metadata("paper",
"http://www.hindawi.com/journals/jcli/2013/787250/"),
Metadata("Tutorial",
"http://flyingpigeon.readthedocs.io/en/latest/tutorials/sdm.html"),
],
abstract="Indices preparation for SDM process",
inputs=inputs,
outputs=outputs,
status_supported=True,
store_supported=True,
)
)
]
super(SDMallinoneProcess, self).__init__(
self._handler,
identifier="sdm_allinone",
title="Species distribution Model (all in one)",
version="0.10",
metadata=[
Metadata("LWF", "http://www.lwf.bayern.de/"),
Metadata(
"Doc",
"http://flyingpigeon.readthedocs.io/en/latest/descriptions/index.html#species-distribution-model"),
Metadata("paper",
"http://www.hindawi.com/journals/jcli/2013/787250/"),
Metadata("Tutorial",
"http://flyingpigeon.readthedocs.io/en/latest/tutorials/sdm.html"),
],
abstract="Indices preparation for SDM process",
inputs=inputs,
outputs=outputs,
status_supported=True,
store_supported=True,
)
ComplexOutput('output_log', 'Logging information',
abstract="Collected logs during process run.",
as_reference=True,
supported_formats=[Format('text/plain')]
),
]
super(SegetalfloraProcess, self).__init__(
self._handler,
identifier="segetalflora",
title="Segetal Flora",
abstract="Species biodiversity of segetal flora. ",
version="0.10",
metadata=[
Metadata('LSCE', 'http://www.lsce.ipsl.fr/en/index.php'),
Metadata('Doc', 'http://flyingpigeon.readthedocs.io/en/latest/'),
],
inputs=inputs,
outputs=outputs,
status_supported=True,
store_supported=True,
)
),
ComplexOutput("plotout_uncertainty", "Visualisation Uncertainty plot",
abstract="Visualisation of single variables ensemble mean with uncertainty",
supported_formats=[Format("image/png")],
as_reference=True,
)
]
super(PlottimeseriesProcess, self).__init__(
self._handler,
identifier="plot_timeseries",
title="Graphics (timeseries)",
version="0.10",
metadata=[
Metadata('Doc', 'http://flyingpigeon.readthedocs.io/en/latest/'),
],
abstract="Outputs some timeseries of the file field means. Spaghetti and uncertainty plot",
inputs=inputs,
outputs=outputs,
status_supported=True,
store_supported=True,
)
def from_json(cls, json_output):
instance = cls(
identifier=json_output['identifier'],
title=json_output.get('title'),
abstract=json_output.get('abstract'),
keywords=json_output.get('keywords', []),
workdir=json_output.get('workdir'),
metadata=[Metadata.from_json(data) for data in json_output.get('metadata', [])],
data_format=Format(
schema=json_output['data_format'].get('schema'),
extension=json_output['data_format'].get('extension'),
mime_type=json_output['data_format']['mime_type'],
encoding=json_output['data_format'].get('encoding')
),
supported_formats=[
Format(
schema=infrmt.get('schema'),
extension=infrmt.get('extension'),
mime_type=infrmt['mime_type'],
encoding=infrmt.get('encoding')
) for infrmt in json_output['supported_formats']
],
mode=json_output.get('mode', MODE.NONE)
)
register.register_icclim(fr)
icclim_classes = [k for k in fr.keys() if isinstance(k, str) and k.startswith('icclim')]
class IndicatorProcess(Process, object):
"""A Process class wrapping OCGIS functions."""
key = 'to_be_subclassed'
version = '1.0'
#################
# Common inputs #
#################
resource_inputs = [
ComplexInput('resource', 'Resource',
abstract='NetCDF Files or archive (tar/zip) containing netCDF files.',
metadata=[Metadata('Info')],
min_occurs=1,
max_occurs=1000,
supported_formats=[
Format('application/x-netcdf'),
Format('application/x-tar'),
Format('application/zip'),
]), ]
option_inputs = [
LiteralInput("grouping", "Grouping",
abstract="Temporal group over which the index is computed.",
default='yr',
data_type='string',
min_occurs=0,
max_occurs=1, # len(GROUPING),
allowed_values=GROUPING
ComplexOutput('output_log', 'Logging information',
abstract="Collected logs during process run.",
as_reference=True,
supported_formats=[Format('text/plain')]
),
]
super(WeatherregimesreanalyseProcess, self).__init__(
self._handler,
identifier="weatherregimes_reanalyse",
title="Weather Regimes (based on reanalyses data)",
abstract='k-mean cluster analyse of the pressure patterns. Clusters are equivalent to weather regimes',
version="0.10",
metadata=[
Metadata('LSCE', 'http://www.lsce.ipsl.fr/en/index.php'),
Metadata('Doc', 'http://flyingpigeon.readthedocs.io/en/latest/'),
],
inputs=inputs,
outputs=outputs,
status_supported=True,
store_supported=True,
)
as_reference=True,
),
ComplexOutput('output_log', 'Logging information',
abstract="Collected logs during process run.",
as_reference=True,
supported_formats=[Format('text/plain')]
)
]
super(SDMcsvProcess, self).__init__(
self._handler,
identifier="sdm_csv",
title="Species distribution Model (GBIF-CSV table as input)",
version="0.10",
metadata=[
Metadata("LWF", "http://www.lwf.bayern.de/"),
Metadata(
"Doc",
"http://flyingpigeon.readthedocs.io/en/latest/descriptions/index.html#species-distribution-model"),
Metadata("paper",
"http://www.hindawi.com/journals/jcli/2013/787250/"),
Metadata("Tutorial",
"http://flyingpigeon.readthedocs.io/en/latest/tutorials/sdm.html"),
],
abstract="Indices preparation for SDM process",
inputs=inputs,
outputs=outputs,
status_supported=True,
store_supported=True,
)