Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def __init__(self):
"""Process initialization"""
WPSProcess.__init__(self,
identifier=os.path.split(__file__)[-1].split('.')[0],
title='slurm_averager',
version=1.0, abstract='Slurm Average a variable over a (many) dimension',
storeSupported=True,
statusSupported=True)
self.domain = self.addComplexInput(identifier='domain', title='domain over which to average', formats=[{'mimeType': 'text/json', 'encoding': 'utf-8', 'schema': None}])
self.download = self.addLiteralInput(identifier='download', type=bool, title='download output', default=False)
self.dataIn = self.addComplexInput(identifier='variable', title='variable to average', formats=[{'mimeType': 'text/json'}], minOccurs=1, maxOccurs=1)
self.average = self.addComplexOutput(identifier='average', title='averaged variable', formats=[{'mimeType': 'text/json'}])
self.operation = self.addLiteralInput(identifier='operation', type=str, title='download output', default="FooBar")
self.result = None
def __init__(self):
"""Process initialization"""
WPSProcess.__init__(self, identifier=os.path.split(__file__)[-1].split('.')[0], title='CDAS', version=0.1, abstract='Climate Data Analytic Services', storeSupported='true', statusSupported='true')
self.region = self.addComplexInput(identifier='domain', title='Spatial location of timeseries', formats=[{'mimeType': 'text/json', 'encoding': 'utf-8', 'schema': None}], minOccurs=0, maxOccurs=1 )
self.data = self.addComplexInput(identifier='variable', title='Variables to process', formats=[{'mimeType': 'text/json', 'encoding': 'utf-8', 'schema': None}], minOccurs=1, maxOccurs=1)
self.operation = self.addComplexInput(identifier='operation', title='Analysis operation', formats=[{'mimeType': 'text/json', 'encoding': 'utf-8', 'schema': None}], minOccurs=0, maxOccurs=1)
self.async = self.addLiteralInput(identifier='async', title='Async operation', default='true', type=types.StringType, minOccurs=0, maxOccurs=1)
self.embedded = self.addLiteralInput(identifier='embedded', title='Embedded result', default='false', type=types.StringType, minOccurs=0, maxOccurs=1)
self.result = self.addLiteralOutput( identifier='result', title='timeseries data', type=types.StringType )
def createIOBridgeProcess():
class IOBridgeProcess(WPSProcess):
def __init__(self):
WPSProcess.__init__(self, identifier="iobridge",
title = "Humboldt CST IOBridge",
abstract = """IOBridge process for the Humbold CST.
Process acceptes schema file, oml file and input gml
file and provides the transformation""",
storeSupported = True,
statusSupported = True)
self.schema = self.addComplexInput(identifier="schema",
title="Schema file",
formats = [{"mimeType":"text/xml"}])
self.oml = self.addComplexInput(identifier="oml",
title="Ontology mapping file",
formats = [{"mimeType":"text/xml"}])
self.gmlin = self.addComplexInput(identifier="gml",
def __init__(self):
WPSProcess.__init__(self,
identifier = "time_aggregation",
title="aggregate the time frequency",
version = "0.2",
metadata= [ {"title": "LSCE" , "href": "http://www.lsce.ipsl.fr/"} ],
abstract="Calculates the mean over a given time frequence for one input data experiment",
statusSupported=True,
storeSupported=True
)
# input arguments
self.resource = self.addComplexInput(
identifier="resource",
title="NetCDF Files",
abstract="NetCDF Files",
minOccurs=1,
maxOccurs=100,
def __init__(self):
# definition of this process
WPSProcess.__init__(
self,
identifier="analogs_detection",
title="Analogues of circulation (based on reanalyses data)",
version="0.9",
metadata=[
{"title": "LSCE",
"href": "http://www.lsce.ipsl.fr/en/index.php"},
{"title": "Doc",
"href": "http://flyingpigeon.readthedocs.io/en/latest/\
descriptions/analogues.html#analogues-of-circulation"}
],
abstract="Search for days with analogue pressure pattern for reanalyses data sets",
statusSupported=True,
storeSupported=True
)
def getProcesses(self):
"""Create temporary Process with literal input and output"""
from pywps.Process import WPSProcess
process = WPSProcess(identifier="servletProcess",
title="Java Servlet process")
process.addLiteralInput(identifier="input",
title="Literal input")
process.addLiteralOutput(identifier="output",
title="Literal output")
def execute():
self.outputs["output"].setValue(self.inputs["input"].getValue())
process.execute = execute()
return process
from datetime import datetime, date
from netCDF4 import Dataset
import os
import numpy as np
from cdo import Cdo
import datetime
import string
from flyingpigeon import tools
from pywps.Process import WPSProcess
class GAMProcess(WPSProcess):
def __init__(self):
WPSProcess.__init__(
self,
identifier = "gam",
title = "Species destribution model",
version = "0.2",
metadata=[
{"title":"GAM"},
],
abstract="Species destribution model based on PA - Data",
statusSupported=True,
storeSupported=True
)
import os
import datetime as dt
from flyingpigeon.get_eobs_as_cordex import get_data
from flyingpigeon.get_eobs_as_cordex import EOBS_VARIABLES
from flyingpigeon.subset import countries, countries_longname
from pywps.Process import WPSProcess
import logging
class EobsToCordexProcess(WPSProcess):
def __init__(self):
WPSProcess.__init__(self,
identifier = "eobs_to_cordex",
title="EOBS to CORDEX",
version = "0.4",
metadata= [
{"title": "Institut Pierre Simon Laplace", "href": "https://www.ipsl.fr/en/"}
],
abstract="downloads EOBS data in adaped CORDEX format",
statusSupported=True,
storeSupported=True
)
self.netcdf_file = self.addComplexInput(
identifier="netcdf_file",
import os
import numpy as np
from cdo import Cdo
import datetime
#from math import *
from ocgis.util.shp_process import ShpProcess
#from ocgis.util.shp_cabinet import ShpCabinetIterator
import ocgis
from flyingpigeon import config
from pywps.Process import WPSProcess
import logging
class VBDProcess(WPSProcess):
"""
Process for Anopheles Gambiae population dynamics
"""
def __init__(self):
WPSProcess.__init__(self,
identifier = "vbd",
title="Vector born diseases",
version = "0.2",
metadata= [
{"title": "Climate Service Center", "href": "http://www.climate-service-center.de/"}
],
abstract="Collection of models to calculate variables related to vector born diseases",
statusSupported=True,
storeSupported=True
)