Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def test_download_office():
data = examples.download_office()
assert data.n_cells
def test_download_tri_quadratic_hexahedron():
data = examples.download_tri_quadratic_hexahedron()
assert data.n_cells
def __init__(self):
self._example_data = examples.download_bunny()
_ExampleLoader.__init__(self)
bodies.plot(show_grid=True, multi_colors=True, cpos=[-2, 5, 3])
###############################################################################
# -----
#
# A Real Dataset
# ++++++++++++++
#
# Here is a realistic training dataset of fluvial channels in the subsurface.
# This will threshold the channels from the dataset then separate each
# significantly large body and compute the volumes for each!
#
# Load up the data and threshold the channels:
data = examples.load_channels()
channels = data.threshold([0.9, 1.1])
###############################################################################
# Now extract all the different bodies and compute their volumes:
bodies = channels.split_bodies()
# Now remove all bodies with a small volume
for key in bodies.keys():
b = bodies[key]
vol = b.volume
if vol < 1000.0:
del bodies[key]
continue
# Now lets add a volume array to all blocks
b.cell_arrays["TOTAL VOLUME"] = np.full(b.n_cells, vol)
"""
Append Cell Centers
~~~~~~~~~~~~~~~~~~~
This example will demonstrate how to append a dataset's cell centers as a length 3 tuple array.
This example demonstrates :class:`PVGeo.filters.AppendCellCenters`
"""
from pyvista import examples
from PVGeo.filters import AppendCellCenters
################################################################################
# Use an example mesh from pyvista
mesh = examples.load_rectilinear()
print(mesh)
################################################################################
# Run the PVGeo algorithm
centers = AppendCellCenters().apply(mesh)
print(centers)
################################################################################
centers.plot()
output. The user can specify how they want to rename the array, can choose a
multiplier, and can choose from two types of common normalizations:
Feature Scaling and Standard Score.
This example demos :class:`PVGeo.filters.NormalizeArray`
"""
import numpy as np
import pyvista
from pyvista import examples
import PVGeo
from PVGeo.filters import NormalizeArray
################################################################################
# Create some input data. this can be any `vtkDataObject`
mesh = examples.load_uniform()
title = 'Spatial Point Data'
mesh.plot(scalars=title)
################################################################################
# Apply the filter
f = NormalizeArray(normalization='feature_scale', new_name='foo')
output = f.apply(mesh, title)
print(output)
################################################################################
output.plot(scalars='foo')
"""
Connectivity
~~~~~~~~~~~~
Use the connectivity filter to remove noisy isosurfaces.
This example is very similar to `this VTK example `__
"""
# sphinx_gallery_thumbnail_number = 2
import pyvista as pv
from pyvista import examples
###############################################################################
# Load a dataset that has noisy isosurfaces
mesh = examples.download_pine_roots()
cpos = [(40.6018, -280.533, 47.0172),
(40.6018, 37.2813, 50.1953),
(0.0, 0.0, 1.0)]
# Plot the raw data
p = pv.Plotter()
p.add_mesh(mesh, color='#965434')
p.add_mesh(mesh.outline())
p.show(cpos=cpos)
###############################################################################
# The mesh plotted above is very noisy. We can extract the largest connected
# isosurface in that mesh using the :func:`pyvista.DataSetFilters.connectivity`
# filter and passing ``largest=True`` to the ``connectivity``
# filter or by using the :func:`pyvista.DataSetFilters.extract_largest` filter
"""
Read GSLib Point Set
~~~~~~~~~~~~~~~~~~~~
Read GSLib point set file
"""
# sphinx_gallery_thumbnail_number = 1
from pyvista import examples
from PVGeo.gslib import GSLibPointSetReader
###############################################################################
# points_url = 'http://www.trainingimages.org/uploads/3/4/7/0/34703305/b_100sampledatawl.sgems'
filename, _ = examples.downloads._download_file('b_100sampledatawl.sgems')
point_set = GSLibPointSetReader().apply(filename)
print(point_set)
###############################################################################
point_set.plot()
# Obligatory set up code
import pyvista
from pyvista import examples
import numpy as np
# Set a document-friendly plotting theme
pyvista.set_plot_theme('document')
# Load an example uniform grid
dataset = examples.load_uniform()
# Apply a threshold over a data range
threshed = dataset.threshold([100, 500]) # Figure 4 A
outline = dataset.outline()
contours = dataset.contour() # Figure 4 B
slices = dataset.slice_orthogonal() # Figure 4 C
glyphs = dataset.glyph(factor=1e-3, geom=pyvista.Sphere()) # Figure 4 D
# Two by two comparison
pyvista.plot_compare_four(threshed, contours, slices, glyphs,
{'show_scalar_bar':False},
{'border':False},
camera_position=[-2,5,3], outline=outline,
screenshot='filters.png')
# Apply a filtering chain