Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def test_Xdawn_baselinecov():
"""Test cov precomputation"""
x = np.random.randn(100, 3, 10)
labels = np.array([0, 1]).repeat(50)
baseline_cov = np.identity(3)
xd = Xdawn(baseline_cov=baseline_cov)
xd.fit(x, labels)
xd.transform(x)
def test_Xdawn_init():
"""Test init of Xdawn"""
xd = Xdawn()
def test_Xdawn_fit():
"""Test Fit of Xdawn"""
x = np.random.randn(100, 3, 10)
labels = np.array([0, 1]).repeat(50)
xd = Xdawn()
xd.fit(x, labels)
def test_Xdawn_transform():
"""Test transform of Xdawn"""
x = np.random.randn(100, 3, 10)
labels = np.array([0, 1]).repeat(50)
xd = Xdawn()
xd.fit(x, labels)
xd.transform(x)
Estimate spatial filters and prototyped response for each classes.
Parameters
----------
X : ndarray, shape (n_trials, n_channels, n_samples)
ndarray of trials.
y : ndarray shape (n_trials,)
labels corresponding to each trial.
Returns
-------
self : XdawnCovariances instance
The XdawnCovariances instance.
"""
self.Xd_ = Xdawn(
nfilter=self.nfilter,
classes=self.classes,
estimator=self.xdawn_estimator,
baseline_cov=self.baseline_cov)
self.Xd_.fit(X, y)
self.P_ = self.Xd_.evokeds_
return self
from sklearn.cross_validation import KFold
from sklearn.metrics import roc_auc_score
from utils import (DownSampler, EpochsVectorizer, CospBoostingClassifier,
epoch_data)
dataframe1 = pd.read_csv('ecog_train_with_labels.csv')
array_clfs = OrderedDict()
# ERPs models
array_clfs['XdawnCov'] = make_pipeline(XdawnCovariances(6, estimator='oas'),
TangentSpace('riemann'),
LogisticRegression('l2'))
array_clfs['Xdawn'] = make_pipeline(Xdawn(12, estimator='oas'),
DownSampler(5),
EpochsVectorizer(),
LogisticRegression('l2'))
# Induced activity models
baseclf = make_pipeline(ElectrodeSelection(10, metric=dict(mean='logeuclid',
distance='riemann')),
TangentSpace('riemann'),
LogisticRegression('l1'))
array_clfs['Cosp'] = make_pipeline(CospCovariances(fs=1000, window=32,
overlap=0.95, fmax=300,
fmin=1),
CospBoostingClassifier(baseclf))
from sklearn.cross_validation import KFold
from sklearn.metrics import roc_auc_score
from utils import (DownSampler, EpochsVectorizer, CospBoostingClassifier,
epoch_data)
dataframe1 = pd.read_csv('ecog_train_with_labels.csv')
array_clfs = OrderedDict()
# ERPs models
array_clfs['XdawnCov'] = make_pipeline(XdawnCovariances(6, estimator='oas'),
TangentSpace('riemann'),
LogisticRegression('l2'))
array_clfs['Xdawn'] = make_pipeline(Xdawn(12, estimator='oas'),
DownSampler(5),
EpochsVectorizer(),
LogisticRegression('l2'))
# Induced activity models
baseclf = make_pipeline(ElectrodeSelection(10, metric=dict(mean='logeuclid',
distance='riemann')),
TangentSpace('riemann'),
LogisticRegression('l1'))
array_clfs['Cosp'] = make_pipeline(CospCovariances(fs=1000, window=32,
overlap=0.95, fmax=300,
fmin=1),
CospBoostingClassifier(baseclf))
"""
:param n_filters: The number of spatial filters. When "transform_flag=False", the original_data would
not be filtered.
:param with_xdawn_templates: Set True if padding the templates on the original EEG epochs.
Usually used to calculate Xdawn Covariance Matrix.
:param apply_filters: Sometimes only the templates are needed, in this case set
'transform=False' to just pad the templates on the original EEG epochs. Usually
set to 'False' when using Xdawn Covariance Matrix.
:param name: The name of the block.
"""
super(Xdawn, self).__init__(name)
self.n_filters = n_filters
self.apply_filters = apply_filters
self.with_templates = with_xdawn_templates
self.model = riemman_Xdawn(nfilter=self.n_filters)
from sklearn.cross_validation import KFold
from sklearn.metrics import roc_auc_score
from utils import (DownSampler, EpochsVectorizer, CospBoostingClassifier,
epoch_data)
dataframe1 = pd.read_csv('ecog_train_with_labels.csv')
array_clfs = OrderedDict()
# ERPs models
array_clfs['XdawnCov'] = make_pipeline(XdawnCovariances(6, estimator='oas'),
TangentSpace('riemann'),
LogisticRegression('l2'))
array_clfs['Xdawn'] = make_pipeline(Xdawn(12, estimator='oas'),
DownSampler(5),
EpochsVectorizer(),
LogisticRegression('l2'))
# Induced activity models
baseclf = make_pipeline(ElectrodeSelection(10, metric=dict(mean='logeuclid',
distance='riemann')),
TangentSpace('riemann'),
LogisticRegression('l1'))
array_clfs['Cosp'] = make_pipeline(CospCovariances(fs=1000, window=32,
overlap=0.95, fmax=300,
fmin=1),
CospBoostingClassifier(baseclf))