Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def test_FgMDM_init():
"""Test init of FgMDM"""
FgMDM(metric='riemann')
# Should raise if metric not string or dict
assert_raises(TypeError, FgMDM, metric=42)
# Should raise if metric is not contain bad keys
assert_raises(KeyError, FgMDM, metric={'universe': 42})
# should works with correct dict
FgMDM(metric={'mean': 'riemann', 'distance': 'logeuclid'})
def test_FgMDM_predict():
"""Test prediction of FgMDM"""
covset = generate_cov(100, 3)
labels = np.array([0, 1]).repeat(50)
fgmdm = FgMDM(metric='riemann')
fgmdm.fit(covset, labels)
fgmdm.predict(covset)
fgmdm.transform(covset)
def test_FgMDM_init():
"""Test init of FgMDM"""
FgMDM(metric='riemann')
# Should raise if metric not string or dict
assert_raises(TypeError, FgMDM, metric=42)
# Should raise if metric is not contain bad keys
assert_raises(KeyError, FgMDM, metric={'universe': 42})
# should works with correct dict
FgMDM(metric={'mean': 'riemann', 'distance': 'logeuclid'})
def test_FgMDM_init():
"""Test init of FgMDM"""
FgMDM(metric='riemann')
# Should raise if metric not string or dict
assert_raises(TypeError, FgMDM, metric=42)
# Should raise if metric is not contain bad keys
assert_raises(KeyError, FgMDM, metric={'universe': 42})
# should works with correct dict
FgMDM(metric={'mean': 'riemann', 'distance': 'logeuclid'})
tmin, tmax = 1., 2.
event_id = dict(hands=2, feet=3)
subjects = range(1,110)
# There is subject where MNE can read the file
subject_to_remove = [88,89,92,100]
for s in subject_to_remove:
if s in subjects:
subjects.remove(s)
runs = [6, 10, 14] # motor imagery: hands vs feet
classifiers = {
'mdm' : make_pipeline(Covariances(),MDM(metric='riemann')),
'fgmdm' : make_pipeline(Covariances(),FgMDM(metric='riemann')),
'tsLR' : make_pipeline(Covariances(),TangentSpace(),LogisticRegression()),
'csp' : make_pipeline(CSP(n_components=4, reg=None, log=True),LDA())
}
# cross validation
results = np.zeros((len(subjects),len(classifiers)))
for s,subject in enumerate(subjects):
print('Processing Subject %s' %(subject))
raw_files = [read_raw_edf(f, preload=True,verbose=False) for f in eegbci.load_data(subject, runs)]
raw = concatenate_raws(raw_files)
picks = pick_types(raw.info, meg=False, eeg=True, stim=False, eog=False,
exclude='bads')