How to use the pyod.utils.data.generate_data function in pyod

To help you get started, we’ve selected a few pyod examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github yzhao062 / pyod / examples / cof_example.py View on Github external
os.path.abspath(os.path.join(os.path.dirname("__file__"), '..')))

from pyod.models.cof import COF
from pyod.utils.data import generate_data

from pyod.utils.data import evaluate_print
from pyod.utils.example import visualize

if __name__ == "__main__":
    contamination = 0.1  # percentage of outliers
    n_train = 200  # number of training points
    n_test = 100  # number of testing points

    # Generate sample data
    X_train, y_train, X_test, y_test = \
        generate_data(n_train=n_train,
                      n_test=n_test,
                      n_features=2,
                      contamination=contamination,
                      random_state=42)

    # train COF detector
    clf_name = 'COF'
    clf = COF(n_neighbors=30)
    clf.fit(X_train)

    # get the prediction labels and outlier scores of the training data
    y_train_pred = clf.labels_  # binary labels (0: inliers, 1: outliers)
    y_train_scores = clf.decision_scores_  # raw outlier scores

    # get the prediction on the test data
    y_test_pred = clf.predict(X_test)  # outlier labels (0 or 1)
github yzhao062 / pyod / examples / xgbod_example.py View on Github external
from pyod.models.xgbod import XGBOD
from pyod.utils.data import generate_data
from pyod.utils.data import evaluate_print

if __name__ == "__main__":
    # Define data file and read X and y
    # Generate some data if the source data is missing
    mat_file = 'cardio.mat'
    try:
        mat = loadmat(os.path.join('data', mat_file))

    except TypeError:
        print('{data_file} does not exist. Use generated data'.format(
            data_file=mat_file))
        X, y = generate_data(train_only=True)  # load data
    except IOError:
        print('{data_file} does not exist. Use generated data'.format(
            data_file=mat_file))
        X, y = generate_data(train_only=True)  # load data
    else:
        X = mat['X']
        y = mat['y'].ravel()
        X, y = check_X_y(X, y)

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4,
                                                        random_state=42)

    # train XGBOD detector
    clf_name = 'XGBOD'
    clf = XGBOD(random_state=42)
    clf.fit(X_train, y_train)
github yzhao062 / pyod / examples / ocsvm_example.py View on Github external
plt.savefig('{clf_name}.png'.format(clf_name=clf_name), dpi=300)

    if show_figure:
        plt.show()

    return


if __name__ == "__main__":
    contamination = 0.1  # percentage of outliers
    n_train = 200  # number of training points
    n_test = 100  # number of testing points

    # Generate sample data
    X_train, y_train, X_test, y_test = \
        generate_data(n_train=n_train,
                      n_test=n_test,
                      n_features=2,
                      contamination=contamination,
                      random_state=42)

    # train one_class_svm detector
    clf_name = 'OneClassSVM'
    clf = OCSVM()
    clf.fit(X_train)

    # get the prediction labels and outlier scores of the training data
    y_train_pred = clf.labels_  # binary labels (0: inliers, 1: outliers)
    y_train_scores = clf.decision_scores_  # raw outlier scores

    # get the prediction on the test data
    y_test_pred = clf.predict(X_test)  # outlier labels (0 or 1)
github yzhao062 / pyod / examples / so_gaal_example.py View on Github external
sys.path.append(
    os.path.abspath(os.path.join(os.path.dirname("__file__"), '..')))

from pyod.models.so_gaal import SO_GAAL
from pyod.utils.data import generate_data
from pyod.utils.data import evaluate_print

if __name__ == "__main__":
    contamination = 0.1  # percentage of outliers
    n_train = 30000  # number of training points
    n_test = 3000  # number of testing points
    n_features = 300  # number of features

    # Generate sample data
    X_train, y_train, X_test, y_test = \
        generate_data(n_train=n_train,
                      n_test=n_test,
                      n_features=n_features,
                      contamination=contamination,
                      random_state=42)

    # train SO_GAAL detector
    clf_name = 'SO_GAAL'
    clf = SO_GAAL(contamination=contamination)
    clf.fit(X_train)

    # get the prediction labels and outlier scores of the training data
    y_train_pred = clf.labels_  # binary labels (0: inliers, 1: outliers)
    y_train_scores = clf.decision_scores_  # raw outlier scores

    # get the prediction on the test data
    y_test_pred = clf.predict(X_test)  # outlier labels (0 or 1)
github yzhao062 / pyod / examples / mcd_example.py View on Github external
plt.savefig('{clf_name}.png'.format(clf_name=clf_name), dpi=300)

    if show_figure:
        plt.show()

    return


if __name__ == "__main__":
    contamination = 0.1  # percentage of outliers
    n_train = 200  # number of training points
    n_test = 100  # number of testing points

    # Generate sample data
    X_train, y_train, X_test, y_test = \
        generate_data(n_train=n_train,
                      n_test=n_test,
                      n_features=2,
                      contamination=contamination,
                      random_state=42)

    # train LOF detector
    clf_name = 'MCD'
    clf = MCD()
    clf.fit(X_train)

    # get the prediction labels and outlier scores of the training data
    y_train_pred = clf.labels_  # binary labels (0: inliers, 1: outliers)
    y_train_scores = clf.decision_scores_  # raw outlier scores

    # get the prediction on the test data
    y_test_pred = clf.predict(X_test)  # outlier labels (0 or 1)
github yzhao062 / pyod / examples / auto_encoder_example.py View on Github external
sys.path.append(
    os.path.abspath(os.path.join(os.path.dirname("__file__"), '..')))

from pyod.models.auto_encoder import AutoEncoder
from pyod.utils.data import generate_data
from pyod.utils.data import evaluate_print

if __name__ == "__main__":
    contamination = 0.1  # percentage of outliers
    n_train = 20000  # number of training points
    n_test = 2000  # number of testing points
    n_features = 300  # number of features

    # Generate sample data
    X_train, y_train, X_test, y_test = \
        generate_data(n_train=n_train,
                      n_test=n_test,
                      n_features=n_features,
                      contamination=contamination,
                      random_state=42)

    # train AutoEncoder detector
    clf_name = 'AutoEncoder'
    clf = AutoEncoder(epochs=30, contamination=contamination)
    clf.fit(X_train)

    # get the prediction labels and outlier scores of the training data
    y_train_pred = clf.labels_  # binary labels (0: inliers, 1: outliers)
    y_train_scores = clf.decision_scores_  # raw outlier scores

    # get the prediction on the test data
    y_test_pred = clf.predict(X_test)  # outlier labels (0 or 1)
github yzhao062 / pyod / examples / cblof_example.py View on Github external
plt.savefig('{clf_name}.png'.format(clf_name=clf_name), dpi=300)

    if show_figure:
        plt.show()

    return


if __name__ == "__main__":
    contamination = 0.1  # percentage of outliers
    n_train = 200  # number of training points
    n_test = 100  # number of testing points

    # Generate sample data
    X_train, y_train, X_test, y_test = \
        generate_data(n_train=n_train,
                      n_test=n_test,
                      n_features=2,
                      contamination=contamination,
                      random_state=42)

    # train CBLOF detector
    clf_name = 'CBLOF'
    clf = CBLOF()
    clf.fit(X_train)

    # get the prediction labels and outlier scores of the training data
    y_train_pred = clf.labels_  # binary labels (0: inliers, 1: outliers)
    y_train_scores = clf.decision_scores_  # raw outlier scores

    # get the prediction on the test data
    y_test_pred = clf.predict(X_test)  # outlier labels (0 or 1)
github yzhao062 / pyod / examples / lof_example.py View on Github external
plt.savefig('{clf_name}.png'.format(clf_name=clf_name), dpi=300)

    if show_figure:
        plt.show()

    return


if __name__ == "__main__":
    contamination = 0.1  # percentage of outliers
    n_train = 200  # number of training points
    n_test = 100  # number of testing points

    # Generate sample data
    X_train, y_train, X_test, y_test = \
        generate_data(n_train=n_train,
                      n_test=n_test,
                      n_features=2,
                      contamination=contamination,
                      random_state=42)

    # train LOF detector
    clf_name = 'LOF'
    clf = LOF()
    clf.fit(X_train)

    # get the prediction labels and outlier scores of the training data
    y_train_pred = clf.labels_  # binary labels (0: inliers, 1: outliers)
    y_train_scores = clf.decision_scores_  # raw outlier scores

    # get the prediction on the test data
    y_test_pred = clf.predict(X_test)  # outlier labels (0 or 1)
github yzhao062 / combo / examples / detector_lscp_example.py View on Github external
from pyod.models.knn import KNN
from pyod.models.lof import LOF
from pyod.models.ocsvm import OCSVM
from pyod.utils.data import generate_data
from pyod.utils.data import evaluate_print
from pyod.utils.example import visualize

from combo.models.detector_lscp import LSCP

contamination = 0.1  # percentage of outliers
n_train = 200  # number of training points
n_test = 100  # number of testing points

# Generate sample data
X_train, y_train, X_test, y_test = \
    generate_data(n_train=n_train,
                  n_test=n_test,
                  n_features=2,
                  contamination=contamination,
                  random_state=42)

detectors = [KNN(), LOF(), OCSVM()]

clf = LSCP(base_estimators=detectors)
clf_name = 'LSCP'
clf.fit(X_train)

# get the prediction labels and outlier scores of the training data
y_train_pred = clf.labels_  # binary labels (0: inliers, 1: outliers)
y_train_scores = clf.decision_scores_  # raw outlier scores

# get the prediction on the test data
github yzhao062 / pyod / examples / hbos_example.py View on Github external
plt.savefig('{clf_name}.png'.format(clf_name=clf_name), dpi=300)

    if show_figure:
        plt.show()

    return


if __name__ == "__main__":
    contamination = 0.1  # percentage of outliers
    n_train = 200  # number of training points
    n_test = 100  # number of testing points

    # Generate sample data
    X_train, y_train, X_test, y_test = \
        generate_data(n_train=n_train,
                      n_test=n_test,
                      n_features=2,
                      contamination=contamination,
                      random_state=42)

    # train HBOS detector
    clf_name = 'HBOS'
    clf = HBOS()
    clf.fit(X_train)

    # get the prediction labels and outlier scores of the training data
    y_train_pred = clf.labels_  # binary labels (0: inliers, 1: outliers)
    y_train_scores = clf.decision_scores_  # raw outlier scores

    # get the prediction on the test data
    y_test_pred = clf.predict(X_test)  # outlier labels (0 or 1)