Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
y = mat['y'].ravel()
outliers_fraction = np.sum(y) / len(y)
X = StandardScaler().fit_transform(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4)
classifiers = {
'Angle-based Outlier Detector (ABOD)': ABOD(n_neighbors=10,
contamination=outliers_fraction),
'Cluster-based Local Outlier Factor (CBLOF)':
CBLOF(contamination=outliers_fraction, check_estimator=False),
'Feature Bagging': FeatureBagging(LOF(), contamination=outliers_fraction),
'Histogram-base Outlier Detection (HBOS)': HBOS(
contamination=outliers_fraction),
'Isolation Forest': IForest(contamination=outliers_fraction),
'K Nearest Neighbors (KNN)': KNN(contamination=outliers_fraction),
'Average KNN': KNN(method='mean', contamination=outliers_fraction),
'Local Outlier Factor (LOF)': LOF(contamination=outliers_fraction),
'Minimum Covariance Determinant (MCD)': MCD(
contamination=outliers_fraction),
'One-class SVM (OCSVM)': OCSVM(contamination=outliers_fraction),
'Principal Component Analysis (PCA)': PCA(contamination=outliers_fraction)
}
stat_mat_all = np.zeros([len(classifiers), 10])
report_list = ['train_roc_orig', 'train_p@n_orig', 'train_roc_psa',
'train_p@n_psa',
'test_time_orig', 'test_roc_orig', 'test_p@n_orig',
'test_time_psa', 'test_roc_psa', 'test_p@n_psa']
classifier_names = ['ABOD', 'CBLOF', 'FB', 'HBOS', 'IF', 'KNN', 'AKNN', 'LOF',
'MCD', 'OCSVM', 'PCA']
outliers_fraction = np.sum(y) / len(y)
X = StandardScaler().fit_transform(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4)
classifiers = {
'Angle-based Outlier Detector (ABOD)': ABOD(n_neighbors=10,
contamination=outliers_fraction),
'Cluster-based Local Outlier Factor (CBLOF)':
CBLOF(contamination=outliers_fraction, check_estimator=False),
'Feature Bagging': FeatureBagging(LOF(), contamination=outliers_fraction),
'Histogram-base Outlier Detection (HBOS)': HBOS(
contamination=outliers_fraction),
'Isolation Forest': IForest(contamination=outliers_fraction),
'K Nearest Neighbors (KNN)': KNN(contamination=outliers_fraction),
'Average KNN': KNN(method='mean', contamination=outliers_fraction),
'Local Outlier Factor (LOF)': LOF(contamination=outliers_fraction),
'Minimum Covariance Determinant (MCD)': MCD(
contamination=outliers_fraction),
'One-class SVM (OCSVM)': OCSVM(contamination=outliers_fraction),
'Principal Component Analysis (PCA)': PCA(contamination=outliers_fraction)
}
stat_mat_all = np.zeros([len(classifiers), 10])
report_list = ['train_roc_orig', 'train_p@n_orig', 'train_roc_psa',
'train_p@n_psa',
'test_time_orig', 'test_roc_orig', 'test_p@n_orig',
'test_time_psa', 'test_roc_psa', 'test_p@n_psa']
classifier_names = ['ABOD', 'CBLOF', 'FB', 'HBOS', 'IF', 'KNN', 'AKNN', 'LOF',
'MCD', 'OCSVM', 'PCA']
if __name__ == "__main__":
contamination = 0.1 # percentage of outliers
n_train = 200 # number of training points
n_test = 100 # number of testing points
# Generate sample data
X_train, y_train, X_test, y_test = \
generate_data(n_train=n_train,
n_test=n_test,
n_features=2,
contamination=contamination,
random_state=42)
# train kNN detector
clf_name = 'KNN'
clf = KNN()
clf.fit(X_train)
# get the prediction labels and outlier scores of the training data
y_train_pred = clf.labels_ # binary labels (0: inliers, 1: outliers)
y_train_scores = clf.decision_scores_ # raw outlier scores
# get the prediction on the test data
y_test_pred = clf.predict(X_test) # outlier labels (0 or 1)
y_test_scores = clf.decision_function(X_test) # outlier scores
# evaluate and print the results
print("\nOn Training Data:")
evaluate_print(clf_name, y_train, y_train_scores)
print("\nOn Test Data:")
evaluate_print(clf_name, y_test, y_test_scores)
PCA(contamination=contamination),
PCA(contamination=contamination),
PCA(contamination=contamination),
PCA(contamination=contamination),
PCA(contamination=contamination),
PCA(contamination=contamination),
PCA(contamination=contamination),
PCA(contamination=contamination),
KNN(n_neighbors=5, contamination=contamination),
KNN(n_neighbors=15, contamination=contamination),
KNN(n_neighbors=25, contamination=contamination),
KNN(n_neighbors=35, contamination=contamination),
KNN(n_neighbors=45, contamination=contamination),
KNN(n_neighbors=50, contamination=contamination),
KNN(n_neighbors=55, contamination=contamination),
KNN(n_neighbors=65, contamination=contamination),
KNN(n_neighbors=75, contamination=contamination),
KNN(n_neighbors=85, contamination=contamination),
KNN(n_neighbors=85, contamination=contamination),
KNN(n_neighbors=85, contamination=contamination),
KNN(n_neighbors=95, contamination=contamination),
KNN(n_neighbors=100, contamination=contamination),
IForest(n_estimators=50, contamination=contamination),
IForest(n_estimators=100, contamination=contamination),
IForest(n_estimators=150, contamination=contamination),
IForest(n_estimators=200, contamination=contamination),
IForest(n_estimators=50, contamination=contamination),
IForest(n_estimators=100, contamination=contamination),
IForest(n_estimators=150, contamination=contamination),
IForest(n_estimators=200, contamination=contamination),
standardization_flag_list : list of boolean
The list of bool flag to indicate whether standardization is needed
"""
estimator_list = []
standardization_flag_list = []
# predefined range of n_neighbors for KNN, AvgKNN, and LOF
k_range = [1, 3, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
# validate the value of k
k_range = [k for k in k_range if k < X.shape[0]]
for k in k_range:
estimator_list.append(KNN(n_neighbors=k, method='largest'))
estimator_list.append(KNN(n_neighbors=k, method='mean'))
estimator_list.append(LOF(n_neighbors=k))
standardization_flag_list.append(True)
standardization_flag_list.append(True)
standardization_flag_list.append(True)
n_bins_range = [3, 5, 7, 9, 12, 15, 20, 25, 30, 50]
for n_bins in n_bins_range:
estimator_list.append(HBOS(n_bins=n_bins))
standardization_flag_list.append(False)
# predefined range of nu for one-class svm
nu_range = [0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99]
for nu in nu_range:
estimator_list.append(OCSVM(nu=nu))
standardization_flag_list.append(True)
def __init__(self, contamination=0.1, n_neighbors=5, method='largest',
radius=1.0, algorithm='auto', leaf_size=30,
metric='minkowski', p=2, metric_params=None, n_jobs=1,
**kwargs):
super(KNN, self).__init__(contamination=contamination)
self.n_neighbors = n_neighbors
self.method = method
self.radius = radius
self.algorithm = algorithm
self.leaf_size = leaf_size
self.metric = metric
self.p = p
self.metric_params = metric_params
self.n_jobs = n_jobs
if self.algorithm != 'auto' and self.algorithm != 'ball_tree':
warn('algorithm parameter is deprecated and will be removed '
'in version 0.7.6. By default, ball_tree will be used.',
FutureWarning)
self.neigh_ = NearestNeighbors(n_neighbors=self.n_neighbors,
'Angle-based Outlier Detector (ABOD)':
ABOD(contamination=outliers_fraction),
'Cluster-based Local Outlier Factor (CBLOF)':
CBLOF(contamination=outliers_fraction,
check_estimator=False, random_state=random_state),
'Feature Bagging':
FeatureBagging(LOF(n_neighbors=35),
contamination=outliers_fraction,
random_state=random_state),
'Histogram-base Outlier Detection (HBOS)': HBOS(
contamination=outliers_fraction),
'Isolation Forest': IForest(contamination=outliers_fraction,
random_state=random_state),
'K Nearest Neighbors (KNN)': KNN(
contamination=outliers_fraction),
'Average KNN': KNN(method='mean',
contamination=outliers_fraction),
# 'Median KNN': KNN(method='median',
# contamination=outliers_fraction),
'Local Outlier Factor (LOF)':
LOF(n_neighbors=35, contamination=outliers_fraction),
# 'Local Correlation Integral (LOCI)':
# LOCI(contamination=outliers_fraction),
'Minimum Covariance Determinant (MCD)': MCD(
contamination=outliers_fraction, random_state=random_state),
'One-class SVM (OCSVM)': OCSVM(contamination=outliers_fraction),
'Principal Component Analysis (PCA)': PCA(
contamination=outliers_fraction, random_state=random_state),
# 'Stochastic Outlier Selection (SOS)': SOS(
# contamination=outliers_fraction),
'Locally Selective Combination (LSCP)': LSCP(
detector_list, contamination=outliers_fraction,
X_train_norm, X_test_norm = standardizer(X_train, X_test)
classifiers = {'Angle-based Outlier Detector (ABOD)': ABOD(
contamination=outliers_fraction),
'Cluster-based Local Outlier Factor': CBLOF(
n_clusters=10,
contamination=outliers_fraction,
check_estimator=False,
random_state=random_state),
'Feature Bagging': FeatureBagging(contamination=outliers_fraction,
random_state=random_state),
'Histogram-base Outlier Detection (HBOS)': HBOS(
contamination=outliers_fraction),
'Isolation Forest': IForest(contamination=outliers_fraction,
random_state=random_state),
'K Nearest Neighbors (KNN)': KNN(contamination=outliers_fraction),
'Local Outlier Factor (LOF)': LOF(
contamination=outliers_fraction),
'Minimum Covariance Determinant (MCD)': MCD(
contamination=outliers_fraction, random_state=random_state),
'One-class SVM (OCSVM)': OCSVM(contamination=outliers_fraction),
'Principal Component Analysis (PCA)': PCA(
contamination=outliers_fraction, random_state=random_state),
}
classifiers_indices = {
'Angle-based Outlier Detector (ABOD)': 0,
'Cluster-based Local Outlier Factor': 1,
'Feature Bagging': 2,
'Histogram-base Outlier Detection (HBOS)': 3,
'Isolation Forest': 4,
'K Nearest Neighbors (KNN)': 5,
'Local Outlier Factor (LOF)': 6,