Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def template_build_visualize(sample_path):
print("KD Tree for sample: '" + sample_path + "'");
sample = read_sample(sample_path);
tree_instance = kdtree(sample);
kdtree_text_visualizer(tree_instance).visualize(True);
def template_clustering(number_clusters, path, iterations, maxneighbors):
sample = read_sample(path);
clarans_instance = clarans(sample, number_clusters, iterations, maxneighbors);
(ticks, result) = timedcall(clarans_instance.process);
print("Sample: ", path, "\t\tExecution time: ", ticks, "\n");
clusters = clarans_instance.get_clusters();
draw_clusters(sample, clusters);
def template_clustering(number_clusters, path, links):
sample = read_sample(path)
clusters_centroid_link = None
clusters_single_link = None
clusters_complete_link = None
clusters_average_link = None
visualizer = cluster_visualizer(len(links), len(links));
index_canvas = 0;
if (type_link.CENTROID_LINK in links):
agglomerative_centroid_link = agglomerative(sample, number_clusters, type_link.CENTROID_LINK, True);
(ticks, result) = timedcall(agglomerative_centroid_link.process);
clusters_centroid_link = agglomerative_centroid_link.get_clusters();
visualizer.append_clusters(clusters_centroid_link, sample, index_canvas);
def chaotic_clustering_triangulation_sample_simple_01():
sample = read_sample(SIMPLE_SAMPLES.SAMPLE_SIMPLE1);
template_dynamic_cnn(len(sample), 100, sample, 3, type_conn.TRIANGULATION_DELAUNAY);
def cluster_iris():
start_centers = kmeans_plusplus_initializer(read_sample(FAMOUS_SAMPLES.SAMPLE_IRIS), 4).initialize()
template_clustering(start_centers, FAMOUS_SAMPLES.SAMPLE_IRIS)
def chaotic_clustering_sample_simple_04():
sample = read_sample(SIMPLE_SAMPLES.SAMPLE_SIMPLE4);
template_dynamic_cnn(len(sample), 100, sample, 5, type_conn.ALL_TO_ALL);
def chaotic_clustering_sample_simple_03():
sample = read_sample(SIMPLE_SAMPLES.SAMPLE_SIMPLE3);
template_dynamic_cnn(len(sample), 100, sample, 10, type_conn.ALL_TO_ALL);
def template_animated_clustering(file, radius, order, expected_cluster_amount, title_animation = None):
sample = read_sample(file);
expected_result_obtained = False;
analyser = None;
while (expected_result_obtained == False):
network = syncnet(sample, radius, initial_phases = initial_type.RANDOM_GAUSSIAN, ccore = True);
analyser = network.process(order, solve_type.FAST, True);
clusters = analyser.allocate_clusters(0.1);
if (len(clusters) == expected_cluster_amount):
print("Expected result is obtained - start rendering...")
expected_result_obtained = True;
visualizer = cluster_visualizer();
visualizer.append_clusters(clusters, sample);
def template_clustering(start_medoids, path, tolerance=0.25, show=True):
sample = read_sample(path)
metric = distance_metric(type_metric.EUCLIDEAN_SQUARE, data=sample)
kmedoids_instance = kmedoids(sample, start_medoids, tolerance, metric=metric)
(ticks, result) = timedcall(kmedoids_instance.process)
clusters = kmedoids_instance.get_clusters()
medoids = kmedoids_instance.get_medoids()
print("Sample: ", path, "\t\tExecution time: ", ticks, "\n")
if show is True:
visualizer = cluster_visualizer(1)
visualizer.append_clusters(clusters, sample, 0)
visualizer.append_cluster([sample[index] for index in start_medoids], marker='*', markersize=15)
visualizer.append_cluster(medoids, data=sample, marker='*', markersize=15)
visualizer.show()
def cluster_iris():
start_centers = kmeans_plusplus_initializer(read_sample(FAMOUS_SAMPLES.SAMPLE_IRIS), 4).initialize()
template_clustering(start_centers, FAMOUS_SAMPLES.SAMPLE_IRIS)