How to use the pyclustering.core.pyclustering_package.package_extractor function in pyclustering

To help you get started, we’ve selected a few pyclustering examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github annoviko / pyclustering / pyclustering / core / xmeans_wrapper.py View on Github external
def xmeans(sample, centers, kmax, tolerance, criterion, repeat):
    pointer_data = package_builder(sample, c_double).create()
    pointer_centers = package_builder(centers, c_double).create()
    
    ccore = ccore_library.get()
    
    ccore.xmeans_algorithm.restype = POINTER(pyclustering_package)
    package = ccore.xmeans_algorithm(pointer_data, pointer_centers, c_size_t(kmax), c_double(tolerance), c_uint(criterion), c_size_t(repeat))
    
    result = package_extractor(package).extract()
    ccore.free_pyclustering_package(package)
    
    return result
github annoviko / pyclustering / pyclustering / core / cure_wrapper.py View on Github external
def cure_get_means(cure_data_pointer):
    ccore = ccore_library.get();
    
    ccore.cure_get_means.restype = POINTER(pyclustering_package);
    package = ccore.cure_get_means(cure_data_pointer);
    
    result = package_extractor(package).extract();
    ccore.free_pyclustering_package(package);
    
    return result;
github annoviko / pyclustering / pyclustering / core / som_wrapper.py View on Github external
def som_get_weights(som_pointer):
    """!
    @brief Returns list of weights of each neuron.
    
    @param[in] som_pointer (c_pointer): pointer to object of self-organized map.
    
    """
    
    ccore = ccore_library.get()
    
    ccore.som_get_weights.restype = POINTER(pyclustering_package)
    package = ccore.som_get_weights(som_pointer)
    
    result = package_extractor(package).extract()
    return result
github annoviko / pyclustering / pyclustering / core / syncpr_wrapper.py View on Github external
def syncpr_dynamic_get_output(pointer_dynamic):
    ccore = ccore_library.get();
    
    ccore.syncpr_dynamic_get_output.restype = POINTER(pyclustering_package);
    package = ccore.syncpr_dynamic_get_output(pointer_dynamic);
    
    result = package_extractor(package).extract();
    ccore.free_pyclustering_package(package);
    
    return result;
github annoviko / pyclustering / pyclustering / core / elbow_wrapper.py View on Github external
def elbow(sample, kmin, kmax, initializer):
    pointer_data = package_builder(sample, c_double).create()

    ccore = ccore_library.get()
    if initializer == elbow_center_initializer.KMEANS_PLUS_PLUS:
        ccore.elbow_method_ikpp.restype = POINTER(pyclustering_package)
        package = ccore.elbow_method_ikpp(pointer_data, c_size_t(kmin), c_size_t(kmax))
    elif initializer == elbow_center_initializer.RANDOM:
        ccore.elbow_method_irnd.restype = POINTER(pyclustering_package)
        package = ccore.elbow_method_irnd(pointer_data, c_size_t(kmin), c_size_t(kmax))
    else:
        raise ValueError("Not supported type of center initializer '" + str(initializer) + "'.")

    results = package_extractor(package).extract()
    ccore.free_pyclustering_package(package)

    return (results[elbow_package_indexer.ELBOW_PACKAGE_INDEX_AMOUNT][0],
            results[elbow_package_indexer.ELBOW_PACKAGE_INDEX_WCE])
github annoviko / pyclustering / pyclustering / core / rock_wrapper.py View on Github external
    @param[in] eps: connectivity radius (similarity threshold), points are neighbors if distance between them is less than connectivity radius.
    @param[in] number_clusters: defines number of clusters that should be allocated from the input data set.
    @param[in] threshold: value that defines degree of normalization that influences on choice of clusters for merging during processing.
    
    @return List of allocated clusters, each cluster contains indexes of objects in list of data.
    
    """
    
    pointer_data = package_builder(sample, c_double).create();

    ccore = ccore_library.get();

    ccore.rock_algorithm.restype = POINTER(pyclustering_package);
    package = ccore.rock_algorithm(pointer_data, c_double(eps), c_size_t(number_clusters), c_double(threshold));

    list_of_clusters = package_extractor(package).extract();
    ccore.free_pyclustering_package(package);
    
    return list_of_clusters;
github annoviko / pyclustering / pyclustering / core / som_wrapper.py View on Github external
def som_get_capture_objects(som_pointer):
    """!
    @brief Returns list of indexes of captured objects by each neuron.
    
    @param[in] som_pointer (c_pointer): pointer to object of self-organized map.
    
    """
    
    ccore = ccore_library.get()
    
    ccore.som_get_capture_objects.restype = POINTER(pyclustering_package)
    package = ccore.som_get_capture_objects(som_pointer)
    
    result = package_extractor(package).extract()
    return result
github annoviko / pyclustering / pyclustering / core / silhouette_wrapper.py View on Github external
def silhoeutte_ksearch(sample, kmin, kmax, allocator):
    pointer_data = package_builder(sample, c_double).create()

    ccore = ccore_library.get()
    ccore.silhouette_ksearch_algorithm.restype = POINTER(pyclustering_package)
    package = ccore.silhouette_ksearch_algorithm(pointer_data, c_size_t(kmin), c_size_t(kmax), c_size_t(allocator))

    results = package_extractor(package).extract()
    ccore.free_pyclustering_package(package)

    return (results[silhouette_ksearch_package_indexer.SILHOUETTE_KSEARCH_PACKAGE_INDEX_AMOUNT][0],
            results[silhouette_ksearch_package_indexer.SILHOUETTE_KSEARCH_PACKAGE_INDEX_SCORE][0],
            results[silhouette_ksearch_package_indexer.SILHOUETTE_KSEARCH_PACKAGE_INDEX_SCORES])
github annoviko / pyclustering / pyclustering / core / bsas_wrapper.py View on Github external
def bsas(sample, amount, threshold, metric_pointer):
    pointer_data = package_builder(sample, c_double).create()

    ccore = ccore_library.get()

    ccore.bsas_algorithm.restype = POINTER(pyclustering_package)
    package = ccore.bsas_algorithm(pointer_data, c_size_t(amount), c_double(threshold), metric_pointer)

    result = package_extractor(package).extract()
    ccore.free_pyclustering_package(package)

    return result[0], result[1]
github annoviko / pyclustering / pyclustering / core / som_wrapper.py View on Github external
def som_get_neighbors(som_pointer):
    """!
    @brief Returns list of indexes of neighbors of each neuron.
    
    @param[in] som_pointer (c_pointer): pointer to object of self-organized map.
    
    """
    
    ccore = ccore_library.get()
    
    ccore.som_get_neighbors.restype = POINTER(pyclustering_package)
    package = ccore.som_get_neighbors(som_pointer)
    
    result = package_extractor(package).extract()
    return result