Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
:type: ``list``
:read only: True
step_size
see `step_size `
:default value: 1.0
:type: ``float``
"""
variable = Parameter([[0], [0]], read_only=True, pnl_internal=True, constructor_argument='default_variable')
# these should be removed and use switched to .get_previous()
previous_variable = Parameter([[0], [0]], read_only=True, pnl_internal=True, constructor_argument='default_variable')
previous_value = Parameter([[0], [0]], read_only=True, pnl_internal=True)
gradient_function = Parameter(None, stateful=False, loggable=False)
step_size = Parameter(1.0, modulable=True)
annealing_function = Parameter(None, stateful=False, loggable=False)
convergence_threshold = Parameter(.001, modulable=True)
max_iterations = Parameter(1000, modulable=True)
search_space = Parameter([SampleIterator([0, 0])], stateful=False, loggable=False)
direction = ASCENT
convergence_criterion = Parameter(VALUE, pnl_internal=True)
def _parse_direction(self, direction):
if direction == ASCENT:
return 1
else:
return -1
@tc.typecheck
:default value: 0.0
:type: ``float``
t0
see `t0 `
:default value: 0.2
:type: ``float``
threshold
see `threshold `
:default value: 1.0
:type: ``float``
"""
drift_rate = Parameter(1.0, modulable=True, aliases=[MULTIPLICATIVE_PARAM])
starting_point = Parameter(0.0, modulable=True, aliases=[ADDITIVE_PARAM])
threshold = Parameter(1.0, modulable=True)
noise = Parameter(0.5, modulable=True)
t0 = .200
bias = Parameter(0.5, read_only=True, getter=_DriftDiffusionAnalytical_bias_getter)
# this is read only because conversion is disabled for this function
# this occurs in other places as well
enable_output_type_conversion = Parameter(
False,
stateful=False,
loggable=False,
pnl_internal=True,
read_only=True
)
@tc.typecheck
search_statefulness
see `search_statefulness `
:default value: True
:type: ``bool``
search_termination_function
see `search_termination_function `
:default value: None
:type:
"""
function = Parameter(None, stateful=False, loggable=False)
feature_function = Parameter(None, reference=True, stateful=False, loggable=False)
search_function = Parameter(None, stateful=False, loggable=False)
search_termination_function = Parameter(None, stateful=False, loggable=False)
comp_execution_mode = Parameter('Python', stateful=False, loggable=False, pnl_internal=True)
search_statefulness = Parameter(True, stateful=False, loggable=False)
agent_rep = Parameter(None, stateful=False, loggable=False, pnl_internal=True, structural=True)
feature_values = Parameter(_parse_feature_values_from_variable([defaultControlAllocation]), user=False, pnl_internal=True)
input_ports = Parameter(
[{NAME: OUTCOME, PARAMS: {INTERNAL_ONLY: True}}],
stateful=False,
loggable=False,
read_only=True,
structural=True,
parse_spec=True,
aliases='features',
storage_prob
see `storage_prob `
:default value: 1.0
:type: ``float``
val_size
see `val_size `
:default value: 1
:type: ``int``
"""
variable = Parameter([[0],[0]], pnl_internal=True, constructor_argument='default_variable')
retrieval_prob = Parameter(1.0, modulable=True)
storage_prob = Parameter(1.0, modulable=True, aliases=[MULTIPLICATIVE_PARAM])
key_size = Parameter(1, stateful=True)
val_size = Parameter(1, stateful=True)
duplicate_keys = Parameter(False)
equidistant_keys_select = Parameter(RANDOM)
rate = Parameter(1.0, modulable=True)
noise = Parameter(0.0, modulable=True, aliases=[ADDITIVE_PARAM])
max_entries = Parameter(1000)
random_state = Parameter(None, stateful=True, loggable=False)
distance_function = Parameter(Distance(metric=COSINE), stateful=False, loggable=False)
selection_function = Parameter(OneHot(mode=MIN_INDICATOR), stateful=False, loggable=False)
@tc.typecheck
def __init__(self,
default_variable=None,
:default value: 1
:type: ``int``
"""
variable = Parameter([[0],[0]], pnl_internal=True, constructor_argument='default_variable')
retrieval_prob = Parameter(1.0, modulable=True)
storage_prob = Parameter(1.0, modulable=True, aliases=[MULTIPLICATIVE_PARAM])
key_size = Parameter(1, stateful=True)
val_size = Parameter(1, stateful=True)
duplicate_keys = Parameter(False)
equidistant_keys_select = Parameter(RANDOM)
rate = Parameter(1.0, modulable=True)
noise = Parameter(0.0, modulable=True, aliases=[ADDITIVE_PARAM])
max_entries = Parameter(1000)
random_state = Parameter(None, stateful=True, loggable=False)
distance_function = Parameter(Distance(metric=COSINE), stateful=False, loggable=False)
selection_function = Parameter(OneHot(mode=MIN_INDICATOR), stateful=False, loggable=False)
@tc.typecheck
def __init__(self,
default_variable=None,
retrieval_prob: tc.optional(tc.any(int, float))=1.0,
storage_prob: tc.optional(tc.any(int, float))=1.0,
noise: tc.optional(tc.any(int, float, list, np.ndarray, callable))=0.0,
rate: tc.optional(tc.any(int, float, list, np.ndarray))=1.0,
initializer=None,
distance_function:tc.optional(tc.any(Distance, is_function_type))=None,
selection_function:tc.optional(tc.any(OneHot, is_function_type))=None,
duplicate_keys:tc.any(bool, tc.enum(OVERWRITE))=False,
equidistant_keys_select:tc.enum(RANDOM, OLDEST, NEWEST)=RANDOM,
max_entries=1000,
:type: ``str``
output_ports
see `output_ports `
:default value: [`RESULT`, "{name: INPUT_PATTERN, variable: OWNER_VARIABLE}"]
:type: ``list``
:read only: True
"""
learning_function = Parameter(
Kohonen(distance_function=GAUSSIAN),
stateful=False,
loggable=False,
reference=True
)
learning_rate = Parameter(None, modulable=True)
enable_learning = True
matrix = DEFAULT_MATRIX
output_ports = Parameter(
[RESULT, {NAME: INPUT_PATTERN, VARIABLE: OWNER_VARIABLE}],
stateful=False,
loggable=False,
read_only=True,
structural=True,
)
standard_output_ports = TransferMechanism.standard_output_ports.copy()
standard_output_ports.extend([{NAME:MAXIMUM_ACTIVITY,
VARIABLE:(OWNER_VALUE,0),
FUNCTION: OneHot(mode=MAX_INDICATOR)}
])
:type: ``numpy.ndarray``
:read only: True
allocation_samples
see `allocation_samples `
:default value: None
:type:
modulation
see `modulation `
:default value: None
:type:
"""
variable = Parameter(np.array([defaultGatingAllocation]),
aliases='allocation',
getter=_output_port_variable_getter,
pnl_internal=True, constructor_argument='default_variable'
)
value = Parameter(np.array([defaultGatingAllocation]), read_only=True, aliases=['intensity'], pnl_internal=True)
allocation_samples = Parameter(None, modulable=True)
modulation = None
# # Override ControlSignal cost-related attributes and functions
# cost_options = None
# intensity_cost = None
# adjustment_cost = None
# duration_cost = None
# cost = None
# intensity_cost_function = None
# adjustment_cost_function = None
:default value: 0.5
:type: ``float``
ratio
see `ratio `
:default value: 0.5
:type: ``float``
threshold
see `threshold `
:default value: 0.0
:type: ``float``
"""
function = Parameter(Logistic, stateful=False, loggable=False)
k_value = Parameter(0.5, modulable=True)
threshold = Parameter(0.0, modulable=True)
ratio = Parameter(0.5, modulable=True)
average_based = False
inhibition_only = True
@tc.typecheck
def __init__(self,
default_variable=None,
size=None,
function=Logistic,
matrix=None,
auto: is_numeric_or_none=None,
hetero: is_numeric_or_none=None,
integrator_function=AdaptiveIntegrator,
:type:
rate
see `rate `
:default value: 1.0
:type: float
window_size
see `window_size `
:default value: 1
:type: int
"""
window_size = Parameter(1, stateful=False, loggable=False)
filter_function = Parameter(None, stateful=False, loggable=False)
input_type = None
rate = Parameter(1.0, modulable=True)
@tc.typecheck
@handle_external_context(source=None)
def __init__(self,
default_variable=None,
size=None,
input_ports:tc.optional(tc.any(list, dict))=None,
function:tc.optional(tc.enum(
INPUT, TIME_AVERAGE_INPUT, AVERAGE_INPUTS, INPUT_SEQUENCE))=TIME_AVERAGE_INPUT,
initial_value=None,
# rate:tc.optional(tc.any(int, float))=1.0,
# noise:tc.optional(tc.any(int, float, callable))=0.0,
specifies whether InputState shadows inputs of another InputState;
if not None, must be assigned another InputState
:default value: None
:type: InputState
:read only: True
weight
see `weight `
:default value: None
:type:
"""
function = Parameter(LinearCombination(operation=SUM), stateful=False, loggable=False)
weight = Parameter(None, modulable=True)
exponent = Parameter(None, modulable=True)
combine = None
internal_only = Parameter(False, stateful=False, loggable=False, pnl_internal=True)
shadow_inputs = Parameter(None, stateful=False, loggable=False, read_only=True, pnl_internal=True)
paramClassDefaults = State_Base.paramClassDefaults.copy()
paramClassDefaults.update({PROJECTION_TYPE: MAPPING_PROJECTION,
MECHANISM: None, # These are used to specifiy InputStates by projections to them
OUTPUT_STATES: None # from the OutputStates of a particular Mechanism (see docs)
})
#endregion
@handle_external_context()
@tc.typecheck
def __init__(self,
owner=None,