How to use the psyneulink.Process function in psyneulink

To help you get started, we’ve selected a few psyneulink examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github PrincetonUniversity / PsyNeuLink / tests / no-learning / test_stroop_no_learning.py View on Github external
word_response_weights,
                                             response_layer], name='WORDS_PROCESS')

        #   Colors pathway
        colors_process = pnl.Process(pathway=[colors_input_layer,
                                              color_weights,
                                              colors_hidden_layer,
                                              color_response_weights,
                                              response_layer], name='COLORS_PROCESS')

        #   Task representation pathway
        task_CN_process = pnl.Process(pathway=[task_layer,
                                               task_CN_weights,
                                               colors_hidden_layer],
                                      name='TASK_CN_PROCESS')
        task_WR_process = pnl.Process(pathway=[task_layer,
                                               task_WR_weights,
                                               words_hidden_layer],
                                      name='TASK_WR_PROCESS')

        #   Evidence accumulation pathway
        respond_red_process = pnl.Process(pathway=[response_layer,
                                                   respond_red_differencing_weights,
                                                   respond_red_accumulator],
                                          name='RESPOND_RED_PROCESS')
        respond_green_process = pnl.Process(pathway=[response_layer,
                                                     respond_green_differencing_weights,
                                                     respond_green_accumulator],
                                            name='RESPOND_GREEN_PROCESS')

        #   CREATE SYSTEM
        my_Stroop = pnl.System(processes=[colors_process,
github PrincetonUniversity / PsyNeuLink / Scripts / Examples / System / Rumelhart Semantic Network.py View on Github external
rel_in = pnl.TransferMechanism(size=11, name='REL_IN')
rep_hidden = pnl.TransferMechanism(size=4, function=psyneulink.core.components.functions.transferfunctions.Logistic, name='REP_HIDDEN')
rel_hidden = pnl.TransferMechanism(size=5, function=psyneulink.core.components.functions.transferfunctions.Logistic, name='REL_HIDDEN')
rep_out = pnl.TransferMechanism(size=10, function=psyneulink.core.components.functions.transferfunctions.Logistic, name='REP_OUT')
prop_out = pnl.TransferMechanism(size=12, function=psyneulink.core.components.functions.transferfunctions.Logistic, name='PROP_OUT')
qual_out = pnl.TransferMechanism(size=13, function=psyneulink.core.components.functions.transferfunctions.Logistic, name='QUAL_OUT')
act_out = pnl.TransferMechanism(size=14, function=psyneulink.core.components.functions.transferfunctions.Logistic, name='ACT_OUT')
r_step = pnl.ProcessingMechanism(size=10, function=step, name='REP_STEP')
p_step = pnl.ProcessingMechanism(size=12, function=step, name='PROP_STEP')
q_step = pnl.ProcessingMechanism(size=13, function=step, name='QUAL_STEP')
a_step = pnl.ProcessingMechanism(size=14, function=step, name='ACT_STEP')

#Processes that comprise the System:
# NOTE: this is one of several configuration of processes that can be used to construct the full network
#       (see Test/learning/test_rumelhart_semantic_network.py for other configurations)
rep_hidden_proc = pnl.Process(pathway=[rep_in, rep_hidden, rel_hidden],
                              learning=pnl.LEARNING,
                              name='REP_HIDDEN_PROC')
rel_hidden_proc = pnl.Process(pathway=[rel_in, rel_hidden],
                              learning=pnl.LEARNING,
                              name='REL_HIDDEN_PROC')
rel_rep_proc = pnl.Process(pathway=[rel_hidden, rep_out],
                           learning=pnl.LEARNING,
                           name='REL_REP_PROC')
rel_prop_proc = pnl.Process(pathway=[rel_hidden, prop_out],
                            learning=pnl.LEARNING,
                            name='REL_PROP_PROC')
rel_qual_proc = pnl.Process(pathway=[rel_hidden, qual_out],
                            learning=pnl.LEARNING,
                            name='REL_QUAL_PROC')
rel_act_proc = pnl.Process(pathway=[rel_hidden, act_out],
                           learning=pnl.LEARNING,
github PrincetonUniversity / PsyNeuLink / Scripts / Misc / XOR.py View on Github external
#Next, we specify our output layer. This is where we do our sigmoid transformation, by simply applying the Logistic function.
#The size we specify for this layer is the number of output nodes we want. In this case, we want the network to return a scalar
#for each example (either a 1 or a zero), so our size is 1

output_layer=pnl.TransferMechanism(size=1, function=psyneulink.core.components.functions.transferfunctions.Logistic, name='OUTPUT LAYER')

#Now, we put them together into a process.
#Notice, that we did not need to specify a weighting matrix. One will automatically be generated by psyneulink when we create our
#process.
# JDC ADDED:
# Normally, for learning to occur in a process, we would just specify that learning=pnl.ENABLED.
# However, if we want to specify a specific learning function or error_function to be used, then we must
# specify it by construction a default LearningProjection and giving it the parameters we want.  In this
# case it is the error_function, that we will set to CROSS_ENTROPY (using PsyNeulink's Distance Function):

net2l=pnl.Process(pathway=[input_layer,output_layer],
                  learning=pnl.LearningProjection(error_function=psyneulink.core.components.functions
                                                  .objectivefunctions.Distance(metric=pnl.CROSS_ENTROPY))
                  )

#The pathway argument specifies in which order to execute the layers. THis way, the output of one will be mapped to the input of
#the next.
#To run the process, we will put it into a system.


sys2l=pnl.System(processes=[net2l],learning_rate=4)
sys2l.show_graph(show_learning=pnl.ALL)
github PrincetonUniversity / PsyNeuLink / Scripts / Laura_Stroop.py View on Github external
task_CN_process = pnl.Process(pathway=[task_layer,
                                       task_CN_weights,
                                       colors_hidden_layer],
                              name='TASK_CN_PROCESS')
task_WR_process = pnl.Process(pathway=[task_layer,
                                       task_WR_weights,
                                       words_hidden_layer],
                              name='TASK_WR_PROCESS')


#   Evidence accumulation pathway
respond_red_process = pnl.Process(pathway=[response_layer,
                                           respond_red_differencing_weights,
                                           respond_red_accumulator],
                                  name='RESPOND_RED_PROCESS')
respond_green_process = pnl.Process(pathway=[response_layer,
                                             respond_green_differencing_weights,
                                             respond_green_accumulator],
                                    name='RESPOND_GREEN_PROCESS')

#   CREATE SYSTEM
my_Stroop = pnl.System(processes=[colors_process,
                                  words_process,
                                  task_CN_process,
                                  task_WR_process,
                                  respond_red_process,
                                  respond_green_process],
                       name='FEEDFORWARD_STROOP_SYSTEM')

my_Stroop.show()
# my_Stroop.show_graph(show_dimensions=pnl.ALL)
github PrincetonUniversity / PsyNeuLink / Scripts / Misc / Markus Stroop.py View on Github external
name='TASK_CN_WEIGHTS')

# column 0: task_CN to hidden_'RED', hidden_'GREEN'
# column 1: task_WR to hidden_'RED', hidden_'GREEN'
task_WR_weights = pnl.MappingProjection(matrix=np.matrix([[0, 0.0],
                                                          [4.0, 4.0]]),
                                        name='TASK_WR_WEIGHTS')



# In[ ]:


#   CREATE PATHWAYS
#   Words pathway
words_process = pnl.Process(pathway=[words_input_layer,
                                     word_weights,
                                     words_hidden_layer,
                                     word_response_weights,
                                     response_layer], name='WORDS_PROCESS')

#   Colors pathway
colors_process = pnl.Process(pathway=[colors_input_layer,
                                      color_weights,
                                      colors_hidden_layer,
                                      color_response_weights,
                                      response_layer], name='COLORS_PROCESS')

#   Task representation pathway
task_CN_process = pnl.Process(pathway=[task_layer,
                                       task_CN_weights,
                                       colors_hidden_layer],
github PrincetonUniversity / PsyNeuLink / branch / devel / _downloads / Botvinick_conflict_monitoring_model.py View on Github external
color_response_weights,
                                              response_layer,
                                              response_color_weights,
                                              colors_hidden_layer],
                                     name='COLORS_RESPONSE_PROCESS')

word_response_process = pnl.Process(pathway=[words_input_layer,
                                             word_input_weights,
                                             words_hidden_layer,
                                             word_response_weights,
                                             response_layer,
                                             response_word_weights,
                                             words_hidden_layer],
                                     name='WORDS_RESPONSE_PROCESS')

task_color_response_process = pnl.Process(pathway=[task_input_layer,
                                                   task_input_weights,
                                                   task_layer,
                                                   task_color_weights,
                                                   colors_hidden_layer,
                                                   color_task_weights,
                                                   task_layer])

task_word_response_process = pnl.Process(pathway=[task_input_layer,
                                                  task_layer,
                                                  task_word_weights,
                                                  words_hidden_layer,
                                                  word_task_weights,
                                                  task_layer])

# CREATE SYSTEM -------------------------------------------------------------------------------------------------------
System_Conflict_Monitoring = pnl.System(processes=[color_response_process,
github PrincetonUniversity / PsyNeuLink / psyneulink / library / models / Cohen_Huston1994_horse_race.py View on Github external
words_hidden_layer,
                                             word_response_weights,
                                             response_layer,
                                             response_word_weights,
                                             words_hidden_layer],
                                     name='WORDS_RESPONSE_PROCESS')

task_color_response_process = pnl.Process(pathway=[task_input_layer,
                                                   task_input_weights,
                                                   task_layer,
                                                   task_color_weights,
                                                   colors_hidden_layer,
                                                   color_task_weights,
                                                   task_layer])

task_word_response_process = pnl.Process(pathway=[task_input_layer,
                                                  task_layer,
                                                  task_word_weights,
                                                  words_hidden_layer,
                                                  word_task_weights,
                                                  task_layer])

# Create system -------------------------------------------------------------------------------------------------------
Bidirectional_Stroop = pnl.System(processes=[color_response_process,
                                                   word_response_process,
                                                   task_color_response_process,
                                                   task_word_response_process],

                                  reinitialize_mechanisms_when=pnl.Never(),
                                  name='FEEDFORWARD_STROOP_SYSTEM')

# LOGGING:
github PrincetonUniversity / PsyNeuLink / Scripts / Debug / Markus Stroop.py View on Github external
#   row 0: response_'red' to respond_green_accumulator
#   row 1: response_'green' to respond_green_accumulator
respond_green_differencing_weights = pnl.MappingProjection(matrix=np.matrix([[-1.0], [1.0]]),
                                                           name='RESPOND_GREEN_WEIGHTS')

#   Create pathways as processes

#   Words pathway
words_process = pnl.Process(pathway=[words_input_layer,
                                     word_weights,
                                     words_hidden_layer,
                                     word_response_weights,
                                     response_layer], name='WORDS_PROCESS')

#   Colors pathway
colors_process = pnl.Process(pathway=[colors_input_layer,
                                      color_weights,
                                      colors_hidden_layer,
                                      color_response_weights,
                                      response_layer], name='COLORS_PROCESS')

#   Task representation pathway
task_CN_process = pnl.Process(pathway=[task_layer,
                                       task_CN_weights,
                                       colors_hidden_layer],
                              name='TASK_CN_PROCESS')
task_WR_process = pnl.Process(pathway=[task_layer,
                                       task_WR_weights,
                                       words_hidden_layer],
                              name='TASK_WR_PROCESS')
github PrincetonUniversity / PsyNeuLink / Scripts / Examples / Mixed-NN-and-DDM.py View on Github external
myHiddenLayer = pnl.TransferMechanism(
    name='Hidden Layer 1',
    function=psyneulink.core.components.functions.transferfunctions.Logistic(gain=1.0, x_0=0),
    default_variable=np.zeros((5,))
)

myDDM = pnl.DDM(
    name='My_DDM',
    function=psyneulink.core.components.functions.distributionfunctions.DriftDiffusionAnalytical(
        drift_rate=0.5,
        threshold=1,
        starting_point=0.0
    )
)

myProcess = pnl.Process(
    name='Neural Network DDM Process',
    default_variable=[0, 0],
    pathway=[
        myInputLayer,
        psyneulink.core.components.functions.transferfunctions.get_matrix(pnl.RANDOM_CONNECTIVITY_MATRIX, 2, 5),
        myHiddenLayer,
        pnl.FULL_CONNECTIVITY_MATRIX,
        myDDM
    ]
)

myProcess.reportOutputPref = True
myInputLayer.reportOutputPref = True
myHiddenLayer.reportOutputPref = True
myDDM.reportOutputPref = pnl.PreferenceEntry(True, pnl.PreferenceLevel.INSTANCE)
github PrincetonUniversity / PsyNeuLink / Scripts / Markus_Stroop.py View on Github external
task_CN_process = pnl.Process(pathway=[task_layer,
                                       task_CN_weights,
                                       colors_hidden_layer],
                              name='TASK_CN_PROCESS')
task_WR_process = pnl.Process(pathway=[task_layer,
                                       task_WR_weights,
                                       words_hidden_layer],
                              name='TASK_WR_PROCESS')


#   evidence accumulation pathway
respond_red_process = pnl.Process(pathway=[response_layer,
                                           respond_red_differencing_weights,
                                           respond_red_accumulator],
                                  name='RESPOND_RED_PROCESS')
respond_green_process = pnl.Process(pathway=[response_layer,
                                             respond_green_differencing_weights,
                                             respond_green_accumulator],
                                    name='RESPOND_GREEN_PROCESS')


# In[ ]:


#   CREATE SYSTEM
my_Stroop = pnl.System(processes=[colors_process,
                                  words_process,
                                  task_CN_process,
                                  task_WR_process,
                                  respond_red_process,
                                  respond_green_process],
                       name='FEEDFORWARD_STROOP_SYSTEM')