Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
message('Enclosing directories are ambiguous and cannot be used as labels. You may use "--labels".',
type="ERROR")
# -------------------------------------------------------------------------
# Concatenate dataframes (row bind)
# -------------------------------------------------------------------------
message("Merging dataframes.")
df_merged = pd.concat(df_list, axis=0)
# -------------------------------------------------------------------------
# Plotting
# -------------------------------------------------------------------------
message("Plotting")
my_plot = ggplot(data=df_merged,
mapping=aes(y='Feature', x='dataset'))
my_plot += geom_tile(aes(fill = 'summed_bp_overlaps_log2_fold_change'))
my_plot += scale_fill_gradient2()
my_plot += labs(fill = "log2(fold change) for summed bp overlaps")
# Points for p-val. Must be after geom_tile()
my_plot += geom_point(data = df_merged.loc[df_merged['pval_signif']],
mapping = aes(x='dataset',y='Feature',color = '-log_10(pval)'), size=5, shape ='D', inherit_aes = False)
my_plot += scale_color_gradientn(colors = ["#160E00","#FFB025","#FFE7BD"])
my_plot += labs(color = "-log10(p-value)")
# Theming
my_plot += theme_bw()
my_plot += theme(panel_grid_major=element_blank(),
axis_text_x=element_text(rotation=90),
panel_border=element_blank(),
def simple_algorithm_plot(experiment_name, data_path=_DEFAULT_DATA_PATH):
"""Simple plot of average instantaneous regret by agent, per timestep.
Args:
experiment_name: string = name of experiment config.
data_path: string = where to look for the files.
Returns:
https://web.stanford.edu/~bvr/pubs/TS_Tutorial.pdf
"""
df = load_data(experiment_name, data_path)
plt_df = (df.groupby(['t', 'agent'])
.agg({'instant_regret': np.mean})
.reset_index())
p = (gg.ggplot(plt_df)
+ gg.aes('t', 'instant_regret', colour='agent')
+ gg.geom_line(size=1.25, alpha=0.75)
+ gg.xlab('time period (t)')
+ gg.ylab('per-period regret')
+ gg.scale_colour_brewer(name='agent', type='qual', palette='Set1'))
plot_dict = {experiment_name + '_simple': p}
return plot_dict
mat_n = mat_n.assign(Statistic=['N'] * mat_n.shape[0])
mat_s = d[['feature_type',
'summed_bp_overlaps_log2_fold_change',
'summed_bp_overlaps_pvalue']]
# Uncomputed pvalue are discarded
mat_s = mat_s.drop(mat_s[mat_s.summed_bp_overlaps_pvalue == -1].index)
# Pval set to 0 are changed to 1e-320
mat_s.loc[mat_s['summed_bp_overlaps_pvalue'] == 0, 'summed_bp_overlaps_pvalue'] = 1e-320
mat_s = mat_s.assign(minus_log10_pvalue=list(-np.log10(list(mat_s.summed_bp_overlaps_pvalue))))
mat_s.columns = ['Feature', 'log2_FC', 'pvalue', 'minus_log10_pvalue']
mat_s = mat_s.assign(Statistic=['S'] * mat_s.shape[0])
df_volc = mat_n.append(mat_s)
p = ggplot(data=df_volc, mapping=aes(x='log2_FC', y='minus_log10_pvalue'))
p += geom_vline(xintercept=0, color='darkgray')
p += geom_label(aes(label='Feature', fill='Statistic'),
size=5,
color='black',
alpha=.5,
label_size=0)
p += ylab('-log10(pvalue)') + xlab('log2(FC)')
p += ggtitle('Volcano plot (for both N and S statistics)')
p += scale_fill_manual(values={'N': '#7570b3', 'S': '#e7298a'})
p += theme_bw()
return p
def plot_char_percent_vs_accuracy_smooth(self, category=False):
if category:
return (
ggplot(self.char_plot_df)
+ aes(x='char_percent', y='correct', color='category_jmlr')
+ geom_smooth()
)
else:
return (
ggplot(self.char_plot_df)
+ aes(x='char_percent', y='correct')
+ geom_smooth(method='mavg')
)
def cumulative_travel_time_plot(experiment_name, data_path=_DEFAULT_DATA_PATH):
"""Plot cumulative ratio total travel time relative to optimal shortest path.
Args:
experiment_name: string = name of experiment config.
data_path: string = where to look for the files.
Returns:
https://web.stanford.edu/~bvr/pubs/TS_Tutorial.pdf
"""
df = load_data(experiment_name, data_path)
df['cum_ratio'] = (df.cum_optimal - df.cum_regret) / df.cum_optimal
plt_df = (df.groupby(['t', 'agent'])
.agg({'cum_ratio': np.mean})
.reset_index())
p = (gg.ggplot(plt_df)
+ gg.aes('t', 'cum_ratio', colour='agent')
+ gg.geom_line(size=1.25, alpha=0.75)
+ gg.xlab('time period (t)')
+ gg.ylab('Total distance / optimal')
+ gg.scale_colour_brewer(name='agent', type='qual', palette='Set1')
+ gg.aes(ymin=1)
+ gg.geom_hline(yintercept=1, linetype='dashed', size=2, alpha=0.5))
plot_dict = {experiment_name + '_cum': p}
return plot_dict
# Combine info
color_data_r = np.column_stack((sr, tr, red))
color_data_g = np.column_stack((sg, tg, green))
color_data_b = np.column_stack((sb, tb, blue))
all_color_data = np.row_stack((color_data_b, color_data_g, color_data_r))
# Create a dataframe with headers
dataset = pd.DataFrame({'source': all_color_data[:, 0], 'target': all_color_data[:, 1],
'color': all_color_data[:, 2]})
# Add chip numbers to the dataframe
dataset['chip'] = chips
dataset = dataset.astype({'color': str, 'chip': str, 'target': float, 'source': float})
# Make the plot
p1 = ggplot(dataset, aes(x='target', y='source', color='color', label='chip')) + \
geom_point(show_legend=False, size=2) + \
geom_smooth(method='lm', size=.5, show_legend=False) + \
theme_seaborn() + facet_grid('.~color') + \
geom_label(angle=15, size=7, nudge_y=-.25, nudge_x=.5, show_legend=False) + \
scale_x_continuous(limits=(-5, 270)) + scale_y_continuous(limits=(-5, 275)) + \
scale_color_manual(values=['blue', 'green', 'red'])
# Reset debug
if params.debug is not None:
if params.debug == 'print':
p1.save(os.path.join(params.debug_outdir, 'color_quick_check.png'))
elif params.debug == 'plot':
print(p1)
masked1 = cv2.bitwise_and(rgbimg, rgbimg, mask=mask)
# cplant_back = cv2.add(masked1, img_back1)
if params.debug is not None:
if params.debug == "print":
print_image(masked1, os.path.join(params.debug_outdir, str(params.device) + "_masked_nir_plant.jpg"))
if params.debug == "plot":
plot_image(masked1)
analysis_image = None
if histplot is True:
hist_x = hist_percent
# bin_labels = np.arange(0, bins)
dataset = pd.DataFrame({'Grayscale pixel intensity': bin_labels,
'Proportion of pixels (%)': hist_x})
fig_hist = (ggplot(data=dataset,
mapping=aes(x='Grayscale pixel intensity',
y='Proportion of pixels (%)'))
+ geom_line(color='red')
+ scale_x_continuous(breaks=list(range(0, maxval, 25))))
analysis_image = fig_hist
if params.debug == "print":
fig_hist.save(os.path.join(params.debug_outdir, str(params.device) + '_nir_hist.png'))
elif params.debug == "plot":
print(fig_hist)
outputs.add_observation(variable='nir_frequencies', trait='near-infrared frequencies',
method='plantcv.plantcv.analyze_nir_intensity', scale='frequency', datatype=list,
value=hist_nir, label=bin_labels)
# Store images
def _base_scaling(plt_df: pd.DataFrame,
sweep_vars: Sequence[Text] = None,
with_baseline: bool = True) -> gg.ggplot:
"""Base underlying piece of the scaling plots for deep sea."""
p = (gg.ggplot(plt_df)
+ gg.aes(x='size', y='episode')
)
if np.all(plt_df.finished):
p += gg.geom_point(gg.aes(colour='solved'), size=3, alpha=0.75)
else:
p += gg.geom_point(gg.aes(shape='finished', colour='solved'),
size=3, alpha=0.75)
p += gg.scale_shape_manual(values=['x', 'o'])
if np.all(plt_df.solved):
p += gg.scale_colour_manual(values=['#313695']) # blue
else:
p += gg.scale_colour_manual(values=['#d73027', '#313695']) # [red, blue]
if with_baseline:
baseline_df = _make_baseline(plt_df, sweep_vars)
bin_values = [l for l in binval]
analysis_image = None
# Create a dataframe of bin labels and histogram data
dataset = pd.DataFrame({'bins': binval, 'blue': histograms["b"]["hist"],
'green': histograms["g"]["hist"], 'red': histograms["r"]["hist"],
'lightness': histograms["l"]["hist"], 'green-magenta': histograms["m"]["hist"],
'blue-yellow': histograms["y"]["hist"], 'hue': histograms["h"]["hist"],
'saturation': histograms["s"]["hist"], 'value': histograms["v"]["hist"]})
# Make the histogram figure using plotnine
if hist_plot_type is not None:
if hist_plot_type.upper() == 'RGB':
df_rgb = pd.melt(dataset, id_vars=['bins'], value_vars=['blue', 'green', 'red'],
var_name='Color Channel', value_name='Pixels')
hist_fig = (ggplot(df_rgb, aes(x='bins', y='Pixels', color='Color Channel'))
+ geom_line()
+ scale_x_continuous(breaks=list(range(0, 256, 25)))
+ scale_color_manual(['blue', 'green', 'red'])
)
elif hist_plot_type.upper() == 'LAB':
df_lab = pd.melt(dataset, id_vars=['bins'],
value_vars=['lightness', 'green-magenta', 'blue-yellow'],
var_name='Color Channel', value_name='Pixels')
hist_fig = (ggplot(df_lab, aes(x='bins', y='Pixels', color='Color Channel'))
+ geom_line()
+ scale_x_continuous(breaks=list(range(0, 256, 25)))
+ scale_color_manual(['yellow', 'magenta', 'dimgray'])
)
elif hist_plot_type.upper() == 'HSV':