Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
@validate_quantities(T_e={"equivalencies": u.temperature_energy()})
def __init__(
self,
inputs: Union[Dict[str, np.ndarray], List, Tuple],
*,
T_e: u.K = np.nan * u.K,
equilibrate: Optional[bool] = None,
abundances: Optional[Dict[str, Real]] = None,
log_abundances: Optional[Dict[str, Real]] = None,
n: u.m ** -3 = np.nan * u.m ** -3,
tol: Real = 1e-15,
kappa: Real = np.inf,
):
abundances_provided = abundances is not None or log_abundances is not None
set_abundances = True
@validate_quantities(
probe_area={"can_be_negative": False, "can_be_inf": False, "can_be_nan": False}
)
def get_ion_density_OML(
probe_characteristic: Characteristic,
probe_area: u.m ** 2,
gas,
visualize=False,
return_fit=False,
):
r"""Implement the Orbital Motion Limit (OML) method of obtaining an
estimate of the ion density.
Parameters
----------
probe_characteristic : ~plasmapy.diagnostics.langmuir.Characteristic
The swept probe characteristic that is to be analyzed.
@validate_quantities(T={"equivalencies": u.temperature_energy()})
@particles.particle_input
def _boilerPlate(T: u.K, species: (particles.Particle, particles.Particle), V):
"""
Some boiler plate code for checking if inputs to functions in
collisions.py are good. Also obtains reduced in mass in a
2 particle collision system along with thermal velocity.
"""
masses = [p.mass for p in species]
charges = [np.abs(p.charge) for p in species]
# obtaining reduced mass of 2 particle collision system
reduced_mass = particles.reduced_mass(*species)
# getting thermal velocity of system if no velocity is given
V = _replaceNanVwithThermalV(V, T, reduced_mass)
@validate_quantities(
T={"can_be_negative": False, "equivalencies": u.temperature_energy()}
)
def kappa_thermal_speed(
T: u.K, kappa, particle="e-", method="most_probable"
) -> u.m / u.s:
r"""Return the most probable speed for a particle within a Kappa
distribution.
**Aliases:** `vth_kappa_`
Parameters
----------
T : ~astropy.units.Quantity
The particle temperature in either kelvin or energy per particle
kappa: float
@validate_quantities(
Vperp={"can_be_nan": True},
T_i={"can_be_nan": True, "equivalencies": u.temperature_energy()},
validations_on_return={"equivalencies": u.dimensionless_angles()},
)
def gyroradius(
B: u.T,
particle="e-",
*,
Vperp: u.m / u.s = np.nan * u.m / u.s,
T_i: u.K = np.nan * u.K,
) -> u.m:
r"""Return the particle gyroradius.
**Aliases:** `rc_`, `rhoc_`
Parameters
@validate_quantities(
electron_saturation_current={
"can_be_negative": True,
"can_be_inf": False,
"can_be_nan": False,
},
T_e={
"can_be_negative": False,
"can_be_inf": False,
"can_be_nan": False,
"equivalencies": u.temperature_energy(),
},
probe_area={"can_be_negative": False, "can_be_inf": False, "can_be_nan": False},
validations_on_return={"can_be_negative": False},
)
def get_electron_density_LM(
electron_saturation_current: u.A, T_e: u.eV, probe_area: u.m ** 2
@validate_quantities
def __init__(self, direction, p0: u.m, current: u.A):
self.direction = direction / np.linalg.norm(direction)
self.p0 = p0.value
self._p0_u = p0.unit
self.current = current.value
self._current_u = current.unit
@validate_quantities
def magnetic_pressure(B: u.T) -> u.Pa:
r"""
Calculate the magnetic pressure.
**Aliases:** `pmag_`
Parameters
----------
B : ~astropy.units.Quantity
The magnetic field in units convertible to tesla.
Returns
-------
p_B : ~astropy.units.Quantity
The magnetic pressure in units in pascals (newtons per square meter).
@validate_quantities(
T_i={"can_be_negative": False, "equivalencies": u.temperature_energy()},
T_e={"can_be_negative": False, "equivalencies": u.temperature_energy()},
n_e={"can_be_negative": False, "none_shall_pass": True},
k={"can_be_negative": False, "none_shall_pass": True},
)
def ion_sound_speed(
T_e: u.K,
T_i: u.K,
n_e: u.m ** -3 = None,
k: u.m ** -1 = None,
gamma_e=1,
gamma_i=3,
ion="p+",
z_mean=None,
) -> u.m / u.s:
r"""
@validate_quantities(
T_e={"can_be_negative": False, "equivalencies": u.temperature_energy()},
n_e={"can_be_negative": False},
)
def fundamental_electron_collision_freq(
T_e: u.K,
n_e: u.m ** -3,
ion,
coulomb_log=None,
V=None,
coulomb_log_method="classical",
) -> u.s ** -1:
r"""
Average momentum relaxation rate for a slowly flowing Maxwellian distribution of electrons.
[3]_ provides a derivation of this as an average collision frequency between electrons
and ions for a Maxwellian distribution. It is thus a special case of the collision