Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def main():
# Get options
args = options()
# Read image (converting fmax and track to 8 bit just to create a mask, use 16-bit for all the math)
mask, path, filename = pcv.readimage(args.fmax)
#mask = cv2.imread(args.fmax)
track = cv2.imread(args.track)
mask1, mask2, mask3= cv2.split(mask)
# Pipeline step
device = 0
# Mask pesky track autofluor
device, track1= pcv.rgb2gray_hsv(track, 'v', device, args.debug)
device, track_thresh = pcv.binary_threshold(track1, 0, 255, 'light', device, args.debug)
device, track_inv=pcv.invert(track_thresh, device, args.debug)
device, track_masked = pcv.apply_mask(mask1, track_inv, 'black', device, args.debug)
# Threshold the Saturation image
device, fmax_thresh = pcv.binary_threshold(track_masked, 20, 255, 'light', device, args.debug)
def main():
# Get options
args = options()
# Read image
img, path, filename = pcv.readimage(args.image)
brass_mask = cv2.imread(args.roi)
# Pipeline step
device = 0
# Convert RGB to HSV and extract the Saturation channel
device, s = pcv.rgb2gray_hsv(img, 's', device, args.debug)
# Threshold the Saturation image
device, s_thresh = pcv.binary_threshold(s, 49, 255, 'light', device, args.debug)
# Median Filter
device, s_mblur = pcv.median_blur(s_thresh, 5, device, args.debug)
device, s_cnt = pcv.median_blur(s_thresh, 5, device, args.debug)
# Fill small objects
result.write("\n")
result.write('\t'.join(map(str,boundary_header)))
result.write("\n")
result.write('\t'.join(map(str,boundary_data)))
result.write("\n")
result.write('\t'.join(map(str,boundary_img1)))
result.write("\n")
for row in color_img:
result.write('\t'.join(map(str,row)))
result.write("\n")
result.close()
############################# Use VIS image mask for NIR image#########################
# Find matching NIR image
device, nirpath=pcv.get_nir(path,filename,device,args.debug)
nir, path1, filename1=pcv.readimage(nirpath)
nir2=cv2.imread(nirpath,-1)
# Flip mask
device, f_mask= pcv.flip(mask,"vertical",device,args.debug)
# Reize mask
device, nmask = pcv.resize(f_mask, 0.11532,0.11532, device, args.debug)
# position, and crop mask
device,newmask=pcv.crop_position_mask(nir,nmask,device,57,2,"top","right",args.debug)
# Identify objects
device, nir_objects,nir_hierarchy = pcv.find_objects(nir, newmask, device, args.debug)
# Object combine kept objects
device, nir_combined, nir_combinedmask = pcv.object_composition(nir, nir_objects, nir_hierarchy, device, args.debug)
result.write("\n")
result.write('\t'.join(map(str,boundary_header)))
result.write("\n")
result.write('\t'.join(map(str,boundary_data)))
result.write("\n")
result.write('\t'.join(map(str,boundary_img1)))
result.write("\n")
for row in color_img:
result.write('\t'.join(map(str,row)))
result.write("\n")
result.close()
############################# Use VIS image mask for NIR image#########################
# Find matching NIR image
device, nirpath=pcv.get_nir(path,filename,device,args.debug)
nir, path1, filename1=pcv.readimage(nirpath)
nir2=cv2.imread(nirpath,-1)
# Flip mask
device, f_mask= pcv.flip(mask,"vertical",device,args.debug)
# Reize mask
device, nmask = pcv.resize(f_mask, 0.1304,0.1304, device, args.debug)
# position, and crop mask
device,newmask=pcv.crop_position_mask(nir,nmask,device,65,0,"top","left",args.debug)
# Identify objects
device, nir_objects,nir_hierarchy = pcv.find_objects(nir, newmask, device, args.debug)
# Object combine kept objects
device, nir_combined, nir_combinedmask = pcv.object_composition(nir, nir_objects, nir_hierarchy, device, args.debug)
def main():
# Get options
args = options()
# Read image
img, path, filename = pcv.readimage(args.image)
#roi = cv2.imread(args.roi)
# Pipeline step
device = 0
# Convert RGB to HSV and extract the Saturation channel
device, s = pcv.rgb2gray_hsv(img, 's', device, args.debug)
# Threshold the Saturation image
device, s_thresh = pcv.binary_threshold(s, 36, 255, 'light', device, args.debug)
# Median Filter
device, s_mblur = pcv.median_blur(s_thresh, 5, device, args.debug)
device, s_cnt = pcv.median_blur(s_thresh, 5, device, args.debug)
# Fill small objects
def main():
# Get options
args = options()
# Read image
img, path, filename = pcv.readimage(args.image)
#roi = cv2.imread(args.roi)
# Pipeline step
device = 0
# Convert RGB to HSV and extract the Saturation channel
device, s = pcv.rgb2gray_hsv(img, 's', device, args.debug)
# Threshold the Saturation image
device, s_thresh = pcv.binary_threshold(s, 36, 255, 'light', device, args.debug)
# Median Filter
device, s_mblur = pcv.median_blur(s_thresh, 5, device, args.debug)
device, s_cnt = pcv.median_blur(s_thresh, 5, device, args.debug)
# Fill small objects
def main():
# Get options
args = options()
# Read image
img, path, filename = pcv.readimage(args.image)
brass_mask = cv2.imread(args.roi)
# Pipeline step
device = 0
# Convert RGB to HSV and extract the Saturation channel
device, s = pcv.rgb2gray_hsv(img, 's', device, args.debug)
# Threshold the Saturation image
device, s_thresh = pcv.binary_threshold(s, 49, 255, 'light', device, args.debug)
# Median Filter
device, s_mblur = pcv.median_blur(s_thresh, 5, device, args.debug)
device, s_cnt = pcv.median_blur(s_thresh, 5, device, args.debug)
# Fill small objects
def main():
# Get options
args = options()
# Read image
img, path, filename = pcv.readimage(args.image)
brass_mask = cv2.imread(args.roi)
# Pipeline step
device = 0
# Convert RGB to HSV and extract the Saturation channel
device, s = pcv.rgb2gray_hsv(img, 's', device, args.debug)
# Threshold the Saturation image
device, s_thresh = pcv.binary_threshold(s, 49, 255, 'light', device, args.debug)
# Median Filter
device, s_mblur = pcv.median_blur(s_thresh, 5, device, args.debug)
device, s_cnt = pcv.median_blur(s_thresh, 5, device, args.debug)
# Fill small objects
result.write("\n")
for row in shape_img:
result.write('\t'.join(map(str,row)))
result.write("\n")
result.write('\t'.join(map(str,color_header)))
result.write("\n")
result.write('\t'.join(map(str,color_data)))
result.write("\n")
for row in color_img:
result.write('\t'.join(map(str,row)))
result.write("\n")
############################# Use VIS image mask for NIR image#########################
# Find matching NIR image
device, nirpath=pcv.get_nir(path,filename,device,args.debug)
nir, path1, filename1=pcv.readimage(nirpath)
nir2=cv2.imread(nirpath,-1)
# Flip mask
device, f_mask= pcv.flip(mask,"horizontal",device,args.debug)
# Reize mask
device, nmask = pcv.resize(f_mask, 0.11532,0.11532, device, args.debug)
# position, and crop mask
device,newmask=pcv.crop_position_mask(nir,nmask,device,22,9,"top","left",args.debug)
# Identify objects
device, nir_objects,nir_hierarchy = pcv.find_objects(nir, newmask, device, args.debug)
# Object combine kept objects
device, nir_combined, nir_combinedmask = pcv.object_composition(nir, nir_objects, nir_hierarchy, device, args.debug)
def main():
# Get options
args = options()
# Read image
img, path, filename = pcv.readimage(args.image)
# Pipeline step
device = 0
# Convert RGB to HSV and extract the Saturation channel
device, s = pcv.rgb2gray_hsv(img, 's', device, args.debug)
# Threshold the Saturation image
device, s_thresh = pcv.binary_threshold(s, 36, 255, 'light', device, args.debug)
# Median Filter
device, s_mblur = pcv.median_blur(s_thresh, 0, device, args.debug)
device, s_cnt = pcv.median_blur(s_thresh, 0, device, args.debug)
# Fill small objects
#device, s_fill = pcv.fill(s_mblur, s_cnt, 0, device, args.debug)