Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def _iterative(self, sma, step, linear, geometry, sclip, nclip,
integrmode, conver, minit, maxit, fflag, maxgerr,
going_inwards=False):
if sma > 0.:
# iterative fitter
sample = EllipseSample(self.image, sma, astep=step, sclip=sclip,
nclip=nclip, linear_growth=linear,
geometry=geometry, integrmode=integrmode)
fitter = EllipseFitter(sample)
else:
# sma == 0 requires special handling
sample = CentralEllipseSample(self.image, 0.0, geometry=geometry)
fitter = CentralEllipseFitter(sample)
isophote = fitter.fit(conver, minit, maxit, fflag, maxgerr,
going_inwards)
return isophote
init_rad = fwhm
if debug:
_, ax = plt.subplots(figsize=(6, 6))
ax.imshow(array, origin='lower', interpolation='nearest',
alpha=0.5, cmap='gray')
for i in range(n_annuli):
y = centery + init_rad + separation * i
rad = dist(centery, centerx, y, centerx)
yy, xx = find_coords(rad, fwhm, init_angle, fin_angle)
yy += centery
xx += centerx
apertures = photutils.CircularAperture((xx, yy), fwhm/2)
fluxes = photutils.aperture_photometry(array, apertures)
fluxes = np.array(fluxes['aperture_sum'])
noise_ann = np.std(fluxes)
noise.append(noise_ann)
vector_radd.append(rad)
if debug:
for j in range(xx.shape[0]):
# Circle takes coordinates as (X,Y)
aper = plt.Circle((xx[j], yy[j]), radius=fwhm/2, color='r',
fill=False, alpha=0.8)
ax.add_patch(aper)
cent = plt.Circle((xx[j], yy[j]), radius=0.8, color='r',
fill=True, alpha=0.5)
ax.add_patch(cent)
if apertures is not None:
import photutils
# Aperture photometry, using the unweighted "coimg" and "coiv" arrays.
with np.errstate(divide='ignore'):
imsigma = 1.0/np.sqrt(coiv)
imsigma[coiv == 0] = 0
apimg = []
apimgerr = []
if mods:
apres = []
for rad in apertures:
aper = photutils.CircularAperture(apxy, rad)
p = photutils.aperture_photometry(coimg, aper, error=imsigma)
apimg.append(p.field('aperture_sum'))
apimgerr.append(p.field('aperture_sum_err'))
if mods:
p = photutils.aperture_photometry(coresid, aper)
apres.append(p.field('aperture_sum'))
ap = np.vstack(apimg).T
ap[np.logical_not(np.isfinite(ap))] = 0.
C.AP.set('apflux_img_%s' % band, ap)
ap = 1./(np.vstack(apimgerr).T)**2
ap[np.logical_not(np.isfinite(ap))] = 0.
C.AP.set('apflux_img_ivar_%s' % band, ap)
if mods:
ap = np.vstack(apres).T
ap[np.logical_not(np.isfinite(ap))] = 0.
C.AP.set('apflux_resid_%s' % band, ap)
del apres
'subpixel': A pixel is divided into subpixels and the center of each
subpixel is tested (as above).
'exact': (default) The exact overlap between the aperture and each pixel is
calculated.
"""
n_obj = len(yc)
flux = np.zeros((n_obj))
for i, (y, x) in enumerate(zip(yc, xc)):
if mean:
ind = circle(y, x, (ap_factor*fwhm)/2)
values = array[ind]
obj_flux = np.mean(values)
else:
aper = photutils.CircularAperture((x, y), (ap_factor*fwhm)/2)
obj_flux = photutils.aperture_photometry(array, aper,
method='exact')
obj_flux = np.array(obj_flux['aperture_sum'])
flux[i] = obj_flux
if verbose:
print('Coordinates of object {} : ({},{})'.format(i, y, x))
print('Object Flux = {:.2f}'.format(flux[i]))
return flux
with np.errstate(divide='ignore'):
imsigma = 1.0/np.sqrt(coiv)
imsigma[coiv == 0] = 0
apimg = []
apimgerr = []
if mods:
apres = []
for rad in apertures:
aper = photutils.CircularAperture(apxy, rad)
p = photutils.aperture_photometry(coimg, aper, error=imsigma)
apimg.append(p.field('aperture_sum'))
apimgerr.append(p.field('aperture_sum_err'))
if mods:
p = photutils.aperture_photometry(coresid, aper)
apres.append(p.field('aperture_sum'))
ap = np.vstack(apimg).T
ap[np.logical_not(np.isfinite(ap))] = 0.
C.AP.set('apflux_img_%s' % band, ap)
ap = 1./(np.vstack(apimgerr).T)**2
ap[np.logical_not(np.isfinite(ap))] = 0.
C.AP.set('apflux_img_ivar_%s' % band, ap)
if mods:
ap = np.vstack(apres).T
ap[np.logical_not(np.isfinite(ap))] = 0.
C.AP.set('apflux_resid_%s' % band, ap)
del apres
del apimg,apimgerr,ap
if callback is not None:
callback(band, *callback_args, **kwargs)
xx[i+1] = cosangle*xx[i] - sinangle*yy[i]
yy[i+1] = cosangle*yy[i] + sinangle*xx[i]
xx += centerx
yy += centery
rad = fwhm/2.
if exclude_negative_lobes:
xx = np.concatenate(([xx[0]], xx[2:-1]))
yy = np.concatenate(([yy[0]], yy[2:-1]))
apertures = photutils.CircularAperture((xx, yy), r=rad) # Coordinates (X,Y)
fluxes = photutils.aperture_photometry(array, apertures, method='exact')
fluxes = np.array(fluxes['aperture_sum'])
if array2 is not None:
fluxes2 = photutils.aperture_photometry(array2, apertures,
method='exact')
fluxes2 = np.array(fluxes2['aperture_sum'])
if use2alone:
fluxes = np.concatenate(([fluxes[0]], fluxes2[:]))
else:
fluxes = np.concatenate((fluxes, fluxes2))
f_source = fluxes[0].copy()
fluxes = fluxes[1:]
n2 = fluxes.shape[0]
snr = (f_source - fluxes.mean())/(fluxes.std()*np.sqrt(1+(1/n2)))
if verbose:
msg1 = 'S/N for the given pixel = {:.3f}'
msg2 = 'Integrated flux in FWHM test aperture = {:.3f}'
msg3 = 'Mean of background apertures integrated fluxes = {:.3f}'
# first we find the centroid and put it in the center of the array
centry, centrx = fit_2d(psf, full_output=False, debug=False)
shiftx, shifty = centrx - cx, centry - cy
psf = frame_shift(psf, -shifty, -shiftx, imlib=imlib,
interpolation=interpolation)
for _ in range(2):
centry, centrx = fit_2d(psf, full_output=False, debug=False)
cy, cx = frame_center(psf, verbose=False)
shiftx, shifty = centrx - cx, centry - cy
psf = frame_shift(psf, -shifty, -shiftx, imlib=imlib,
interpolation=interpolation)
# we check whether the flux is normalized and fix it if needed
fwhm_aper = photutils.CircularAperture((frame_center(psf)), fwhm/2)
fwhm_aper_phot = photutils.aperture_photometry(psf, fwhm_aper,
method='exact')
fwhm_flux = np.array(fwhm_aper_phot['aperture_sum'])
if fwhm_flux > 1.1 or fwhm_flux < 0.9:
psf_norm_array = psf / np.array(fwhm_aper_phot['aperture_sum'])
else:
psf_norm_array = psf
if threshold is not None:
psf_norm_array[np.where(psf_norm_array < threshold)] = 0
if mask_core is not None:
psf_norm_array = get_circle(psf_norm_array, radius=mask_core)
if verbose:
print("Flux in 1xFWHM aperture: {:.3f}".format(fwhm_flux[0]))
mg1 = 25.-2.5*numpy.log10(phot_table[ii][jj+3])
mg0 = 25.-2.5*numpy.log10(phot_table[ii][jj+2])
offset[jj,ii] = mg1-mg0
prv = 1.
opt_rad = 10.
for ii in range(0, len(rads)):
chk = numpy.median(offset[ii,:])
if (numpy.abs(chk-prv) <= 0.001) and (rads[ii] < opt_rad):
opt_rad = rads[ii]
print 'The optimal aperture size is '+str(opt_rad)+'.'
if (numpy.abs(chk-prv) > 0.001):
prv = chk
#do the aperture photometry
apertures = CircularAperture(positions, r = opt_rad)
phot_table = aperture_photometry(mast, apertures, method = 'exact')
#get the background of the image
cimg, clow, chigh = scipy.stats.sigmaclip(mast, low=2.5, high = 2.5) #do a 2.5 sigma clipping
bkg_mean = numpy.median(cimg) #determine the sky value
sig = numpy.std(cimg) #determine the sigma(sky)
#convert to magnitudes
flx = phot_table['aperture_sum']-(bkg_mean*(numpy.pi*opt_rad**2))
flx_er = numpy.sqrt(phot_table['aperture_sum'])
x_pix = x
y_pix = y
#create the magnitudes from the flux
mag = 25.0-2.5*numpy.log10(flx)
err = (2.5/numpy.log(10.))*(flx_er/flx)
def cust_lc(center, x=None, y=None):
nonlocal tpf
""" Creates the light curve for both cases (if pointing model is on or off) """
lc = []
for i in range(len(tpf)):
if pointing==True:
ap = create_ap((x[i], y[i]))
else:
ap = create_ap(center)
lc.append(aperture_photometry(tpf[i], ap)['aperture_sum'].data[0])
lc = np.array(lc)/np.nanmedian(lc)
return lc
x_point, y_point = center
dx, dy = motion
r_list = np.arange(1.5, 3.5, 0.5)
matrix = np.zeros( (len(r_list), 2, len(tpf)) )
system = np.zeros( (len(r_list), 2, len(tpf)) )
sigma = np.zeros( (len(r_list), 2) )
for i in range(len(r_list)):
for j in range(len(tpf)):
pos = (x_point[j], y_point[j])
circ, rect = aperture(r_list[i], pos)
# Completes aperture sums for each tpf.flux and each aperture shape
matrix[i][0][j] = aperture_photometry(tpf[j], circ)['aperture_sum'].data[0]
matrix[i][1][j] = aperture_photometry(tpf[j], rect)['aperture_sum'].data[0]
matrix[i][0] = matrix[i][0] / np.nanmedian(matrix[i][0])
matrix[i][1] = matrix[i][1] / np.nanmedian(matrix[i][1])
print("*************")
print("Please hold while we do some systematics corrections.")
print("*************")
# Creates a complete, systematics corrected light curve for each aperture
for i in range(len(r_list)):
lc_circ = self.system_corr(matrix[i][0], dx, dy, jitter=True, roll=True)
system[i][0] = lc_circ
sigma[i][0] = np.std(lc_circ)
lc_rect = self.system_corr(matrix[i][1], dx, dy, jitter=True, roll=True)
system[i][1] = lc_rect
sigma[i][1] = np.std(lc_rect)