How to use the photutils.extern.imageutils.visualization.stretch.BaseStretch function in photutils

To help you get started, we’ve selected a few photutils examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github astropy / photutils / photutils / extern / imageutils / visualization / stretch.py View on Github external
values = _prepare(values, out=out, clip=clip)

        np.multiply(values, self.exp, out=values)
        np.add(values, 1., out=values)
        np.log(values, out=values)
        np.true_divide(values, np.log(self.exp + 1.), out=values)

        return values

    @property
    def inverse(self):
        return InvertedLogStretch(self.exp)


class InvertedLogStretch(BaseStretch):
    """
    Inverse transformation for `~astropy.image.scaling.LogStretch`.
    """

    def __init__(self, a):
        super(InvertedLogStretch, self).__init__()
        self.exp = a

    def __call__(self, values, out=None, clip=True):

        values = _prepare(values, out=out, clip=clip)

        np.multiply(values, np.log(self.exp + 1.), out=values)
        np.exp(values, out=values)
        np.subtract(values, 1., out=values)
        np.true_divide(values, self.exp, out=values)
github astropy / photutils / photutils / extern / imageutils / visualization / stretch.py View on Github external
values = _prepare(values, out=out, clip=clip)

        np.multiply(values, np.log(self.exp + 1.), out=values)
        np.exp(values, out=values)
        np.subtract(values, 1., out=values)
        np.true_divide(values, self.exp, out=values)

        return values

    @property
    def inverse(self):
        return LogStretch(self.exp)


class AsinhStretch(BaseStretch):
    r"""
    An asinh stretch.

    The stretch is given by:

    .. math::
        y = \frac{{\rm asinh}(x / a)}{{\rm asinh}(1 / a)}.
    """

    def __init__(self, a=0.1):
        super(AsinhStretch, self).__init__()
        self.a = a

    def __call__(self, values, out=None, clip=True):

        values = _prepare(values, out=out, clip=clip)
github astropy / photutils / photutils / extern / imageutils / visualization / stretch.py View on Github external
def __call__(self, values, out=None, clip=True):

        values = _prepare(values, out=out, clip=clip)

        np.true_divide(values, self.a, out=values)
        np.sinh(values, out=values)
        np.true_divide(values, np.sinh(1. / self.a), out=values)

        return values

    @property
    def inverse(self):
        return AsinhStretch(a=1. / np.sinh(1. / self.a))


class HistEqStretch(BaseStretch):
    """
    A histogram equalization stretch.

    Parameters
    ----------
    data : float
        The data defining the equalization
    """

    def __init__(self, data, values=None):

        # Assume data is not necessarily normalized at this point
        self.data = np.sort(data.ravel())
        vmin = self.data.min()
        vmax = self.data.max()
        self.data = (self.data - vmin) / (vmax - vmin)
github astropy / photutils / photutils / extern / imageutils / visualization / stretch.py View on Github external
np.subtract(values, self.bias, out=values)
        np.multiply(values, self.contrast, out=values)
        np.add(values, 0.5, out=values)

        if clip:
            np.clip(values, 0, 1, out=values)

        return values

    @property
    def inverse(self):
        return InvertedContrastBiasStretch(self.contrast, self.bias)


class InvertedContrastBiasStretch(BaseStretch):
    """
    Inverse transformation for ContrastBiasStretch.
    """

    def __init__(self, contrast, bias):
        super(InvertedContrastBiasStretch, self).__init__()
        self.contrast = contrast
        self.bias = bias

    def __call__(self, values, out=None, clip=True):

        # As a special case here, we only clip *after* the transformation since
        # it does not map [0:1] to [0:1]

        values = _prepare(values, out=out, clip=False)
github astropy / photutils / photutils / extern / imageutils / visualization / stretch.py View on Github external
The stretch is given by:

    .. math::
        y = x^2
    """

    def __init__(self):
        super(SquaredStretch, self).__init__(2)

    @property
    def inverse(self):
        return SqrtStretch()


class LogStretch(BaseStretch):
    r"""
    A log stretch.

    The stretch is given by:

    .. math::
        y = \frac{\log{(a x + 1)}}{\log{(a + 1)}}.
    """

    def __init__(self, a=1000.0):
        super(LogStretch, self).__init__()
        self.exp = a

    def __call__(self, values, out=None, clip=True):

        values = _prepare(values, out=out, clip=clip)
github astropy / photutils / photutils / extern / imageutils / visualization / stretch.py View on Github external
self.values = values

    def __call__(self, values, out=None, clip=True):

        values = _prepare(values, out=out, clip=clip)

        values[:] = np.interp(values, self.values, self.data)

        return values

    @property
    def inverse(self):
        return HistEqStretch(self.data, values=self.values)


class ContrastBiasStretch(BaseStretch):
    """
    A stretch that takes into account contrast and bias.

    The stretch is given by:

    .. math::
        y = (x - {\\rm bias}) * {\\rm contrast} + 0.5

    and the output values are clipped to the [0:1] range.
    """

    def __init__(self, contrast, bias):
        super(ContrastBiasStretch, self).__init__()
        self.contrast = contrast
        self.bias = bias
github astropy / photutils / photutils / extern / imageutils / visualization / stretch.py View on Github external
def __call__(self, values, out=None, clip=True):

        values = _prepare(values, out=out, clip=clip)

        np.true_divide(values, self.a, out=values)
        np.arcsinh(values, out=values)
        np.true_divide(values, np.arcsinh(1. / self.a), out=values)

        return values

    @property
    def inverse(self):
        return SinhStretch(a=1. / np.arcsinh(1. / self.a))


class SinhStretch(BaseStretch):
    r"""
    A sinh stretch.

    The stretch is given by:

    .. math::
        y = \frac{{\rm sinh}(x / a)}{{\rm sinh}(1 / a)}
    """

    def __init__(self, a=1. / 3.):
        super(SinhStretch, self).__init__()
        self.a = a

    def __call__(self, values, out=None, clip=True):

        values = _prepare(values, out=out, clip=clip)
github astropy / photutils / photutils / extern / imageutils / visualization / stretch.py View on Github external
def __call__(self, values, out=None, clip=True):

        values = _prepare(values, out=out, clip=clip)

        np.power(self.exp, values, out=values)
        np.subtract(values, 1, out=values)
        np.true_divide(values, self.exp - 1.0, out=values)

        return values

    @property
    def inverse(self):
        return InvertedPowerDistStretch(a=self.exp)


class InvertedPowerDistStretch(BaseStretch):
    """
    Inverse transformation for `~astropy.image.scaling.PowerDistStretch`.
    """

    def __init__(self, a=1000.0):
        if a == 1:  # singularity
            raise ValueError("a cannot be set to 1")
        super(InvertedPowerDistStretch, self).__init__()
        self.exp = a

    def __call__(self, values, out=None, clip=True):

        values = _prepare(values, out=out, clip=clip)

        np.multiply(values, self.exp - 1.0, out=values)
        np.add(values, 1, out=values)
github astropy / photutils / photutils / extern / imageutils / visualization / stretch.py View on Github external
self.power = a

    def __call__(self, values, out=None, clip=True):

        values = _prepare(values, out=out, clip=clip)

        np.power(values, self.power, out=values)

        return values

    @property
    def inverse(self):
        return PowerStretch(1. / self.power)


class PowerDistStretch(BaseStretch):
    r"""
    An alternative power stretch.

    The stretch is given by:

    .. math::
        y = \frac{a^x - 1}{a - 1}
    """

    def __init__(self, a=1000.0):
        if a == 1:  # singularity
            raise ValueError("a cannot be set to 1")
        super(PowerDistStretch, self).__init__()
        self.exp = a

    def __call__(self, values, out=None, clip=True):
github astropy / photutils / photutils / extern / imageutils / visualization / stretch.py View on Github external
self.values = values

    def __call__(self, values, out=None, clip=True):

        values = _prepare(values, out=out, clip=clip)

        values[:] = np.interp(values, self.data, self.values)

        return values

    @property
    def inverse(self):
        return InvertedHistEqStretch(self.data, values=self.values)


class InvertedHistEqStretch(BaseStretch):
    """
    Inverse transformation for `~astropy.image.scaling.HistEqStretch`.
    """

    def __init__(self, data, values=None):
        self.data = data
        if values is None:
            self.values = np.linspace(0., 1., len(self.data))
        else:
            self.values = values

    def __call__(self, values, out=None, clip=True):

        values = _prepare(values, out=out, clip=clip)

        values[:] = np.interp(values, self.values, self.data)