How to use the onnxmltools.utils.dump_data_and_model function in onnxmltools

To help you get started, we’ve selected a few onnxmltools examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github onnx / onnxmltools / tests / sklearn / test_SklearnPipeline.py View on Github external
def test_pipeline(self):
        from sklearn.preprocessing import StandardScaler
        from sklearn.pipeline import Pipeline

        data = numpy.array([[0, 0], [0, 0], [1, 1], [1, 1]], dtype=numpy.float32)
        scaler = StandardScaler()
        scaler.fit(data)
        model = Pipeline([('scaler1',scaler), ('scaler2', scaler)])

        model_onnx = convert_sklearn(model, 'pipeline', [('input', FloatTensorType([1, 2]))])
        self.assertTrue(model_onnx is not None)
        dump_data_and_model(data, model, model_onnx, basename="SklearnPipelineScaler")
github onnx / onnxmltools / tests / sklearn / test_SklearnScalerConverter.py View on Github external
def test_robust_scaler_floats_no_scaling(self):
        model = RobustScaler(with_scaling=False)
        data = [[0., 0., 3.], [1., 1., 0.], [0., 2., 1.], [1., 0., 2.]]
        model.fit(data)
        model_onnx = convert_sklearn(model, 'scaler', [('input', FloatTensorType([1, 3]))])
        self.assertTrue(model_onnx is not None)
        dump_data_and_model(numpy.array(data, dtype=numpy.float32),
                            model, basename="SklearnRobustScalerNoScalingFloat32")
github onnx / onnxmltools / tests / coreml / test_cml_GLMRegressorConverter.py View on Github external
def test_glm_regressor(self):
        X, y = make_regression(n_features=4, random_state=0)

        lr = LinearRegression()
        lr.fit(X, y)
        lr_coreml = coremltools.converters.sklearn.convert(lr)
        lr_onnx = convert(lr_coreml.get_spec())
        self.assertTrue(lr_onnx is not None)
        dump_data_and_model(X.astype(numpy.float32), lr, lr_onnx, basename="CmlLinearRegression-Dec4")

        svr = LinearSVR()
        svr.fit(X, y)
        svr_coreml = coremltools.converters.sklearn.convert(svr)
        svr_onnx = convert(svr_coreml.get_spec())
        self.assertTrue(svr_onnx is not None)
        dump_data_and_model(X.astype(numpy.float32), svr, svr_onnx, basename="CmlLinearSvr-Dec4")
github onnx / onnxmltools / tests / sklearn / test_SklearnBinarizerConverter.py View on Github external
def test_model_binarizer(self):
        model = Binarizer(threshold=0.5)
        model_onnx = convert_sklearn(model, 'scikit-learn binarizer', [('input', FloatTensorType([1, 1]))])
        self.assertTrue(model_onnx is not None)
        dump_data_and_model(numpy.array([[1, 1]], dtype=numpy.float32),
                            model, model_onnx, basename="SklearnBinarizer-SkipDim1")
github onnx / onnxmltools / tests / sklearn / test_SklearnSVMConverters.py View on Github external
def test_convert_svmr_linear_binary(self):
        model, X = self._fit_binary_classification(SVR(kernel='linear'))
        model_onnx = convert_sklearn(model, 'SVR', [('input', FloatTensorType([1, X.shape[1]]))])
        nodes = model_onnx.graph.node
        self.assertIsNotNone(nodes)
        self._check_attributes(nodes[0], {'coefficients': None,
                                      'kernel_params': None,
                                      'kernel_type': 'LINEAR',
                                      'post_transform': None,
                                      'rho': None,
                                      'support_vectors': None})
        dump_data_and_model(X, model, model_onnx, basename="SklearnRegSVRLinear-Dec3")
github onnx / onnxmltools / tests / coreml / test_cml_SupportVectorClassifierConverter.py View on Github external
def test_support_vector_classifier_binary_no_prob(self):
        svm, X = self._fit_binary_classification(SVC(gamma=0.5))
        svm_coreml = coremltools.converters.sklearn.convert(svm)
        svm_onnx = convert(svm_coreml.get_spec())
        self.assertTrue(svm_onnx is not None)
        # This should not have a probability output and will be a single node
        nodes = svm_onnx.graph.node
        self.assertEqual(len(nodes), 1)
        self._check_model_outputs(svm_onnx, ['classLabel'])
        dump_data_and_model(X, svm, svm_onnx, basename="CmlBinSVC-Out0",
                            allow_failure=True)
github onnx / onnxmltools / tests / sklearn / test_SklearnSVMConverters.py View on Github external
def test_convert_svmc_linear_binary(self):
        model, X = self._fit_binary_classification(SVC(kernel='linear', probability=False))
        model_onnx = convert_sklearn(model, 'SVC', [('input', FloatTensorType([1, X.shape[1]]))])
        nodes = model_onnx.graph.node
        self.assertIsNotNone(nodes)

        svc_node = nodes[0]
        self._check_attributes(svc_node, {'coefficients': None,
                                          'kernel_params': None,
                                          'kernel_type': 'LINEAR',
                                          'post_transform': None,
                                          'rho': None,
                                          'support_vectors': None,
                                          'vectors_per_class': None})
        dump_data_and_model(X, model, model_onnx, basename="SklearnBinSVCLinearPF-NoProb-Opp",
                            allow_failure="StrictVersion(onnxruntime.__version__) <= StrictVersion('0.1.4')")
github onnx / onnxmltools / tests / lightgbm / test_LightGbmTreeEnsembleConverters.py View on Github external
def test_lightgbm_booster_classifier_zipmap(self):
        X = [[0, 1], [1, 1], [2, 0], [1, 2]]
        X = numpy.array(X, dtype=numpy.float32)
        y = [0, 1, 0, 1]
        data = lightgbm.Dataset(X, label=y)
        model = lightgbm.train({'boosting_type': 'gbdt', 'objective': 'binary',
                                'n_estimators': 3, 'min_child_samples': 1},
                               data)
        model_onnx, prefix = convert_model(model, 'tree-based classifier',
                                           [('input', FloatTensorType([None, 2]))])
        assert "zipmap" in str(model_onnx).lower()
        dump_data_and_model(X, model, model_onnx,
                            allow_failure="StrictVersion(onnx.__version__) < StrictVersion('1.3.0')",
                            basename=prefix + "BoosterBin" + model.__class__.__name__)
github onnx / onnxmltools / tests / sklearn / test_SklearnNormalizerConverter.py View on Github external
def test_model_normalizer_float(self):
        model = Normalizer(norm='l2')
        model_onnx = convert_sklearn(model, 'scikit-learn normalizer', [('input', FloatTensorType([1, 1]))])
        self.assertTrue(model_onnx is not None)
        self.assertTrue(len(model_onnx.graph.node) == 1)
        dump_data_and_model(numpy.array([[1, 1]], dtype=numpy.float32),
                            model, model_onnx, basename="SklearnNormalizerL2-SkipDim1")
github onnx / onnxmltools / tests / svmlib / test_SVMConverters.py View on Github external
y = iris.target
        y[y == 2] = 1
        prob = svmutil.svm_problem(y, X.tolist())

        param = svmutil.svm_parameter()
        param.svm_type = NuSVR
        param.kernel_type = svmutil.RBF
        param.eps = 1
        if noprint:
            param.print_func = noprint

        libsvm_model = svmutil.svm_train(prob, param)

        node = convert(libsvm_model, "LibSvmNuSvmr", [('input', FloatTensorType(shape=['None', 'None']))])
        self.assertTrue(node is not None)
        dump_data_and_model(X[:5].astype(numpy.float32), SkAPIReg(libsvm_model), node,
                            basename="LibSvmNuSvmr")