Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
if objective == "binary:logistic":
ncl = 2
else:
ncl = ntrees // params['n_estimators']
if objective == "reg:logistic" and ncl == 1:
ncl = 2
classes = xgb_node.classes_
if (np.issubdtype(classes.dtype, np.floating) or
np.issubdtype(classes.dtype, np.signedinteger)):
operator.outputs[0].type = Int64TensorType(shape=[N])
else:
operator.outputs[0].type = StringTensorType(shape=[N])
operator.outputs[1].type = operator.outputs[1].type = FloatTensorType([N, ncl])
register_shape_calculator('XGBClassifier', calculate_xgboost_classifier_output_shapes)
register_shape_calculator(keras.layers.Average, calculate_lazy_output_shapes)
register_shape_calculator(keras.layers.Maximum, calculate_lazy_output_shapes)
# Permute
register_shape_calculator(keras.layers.Permute, calculate_lazy_output_shapes)
# Reshape
register_shape_calculator(keras.layers.core.Reshape, calculate_lazy_output_shapes)
# Upsample
register_shape_calculator(keras.layers.UpSampling1D, calculate_lazy_output_shapes)
register_shape_calculator(keras.layers.UpSampling2D, calculate_lazy_output_shapes)
register_shape_calculator(keras.layers.UpSampling3D, calculate_lazy_output_shapes)
# ZeroPad
register_shape_calculator(keras.layers.ZeroPadding1D, calculate_lazy_output_shapes)
register_shape_calculator(keras.layers.ZeroPadding2D, calculate_lazy_output_shapes)
register_shape_calculator(keras.layers.ZeroPadding3D, calculate_lazy_output_shapes)
# RepeatVector
register_shape_calculator(keras.layers.RepeatVector, calculate_lazy_output_shapes)
# Dropout
register_shape_calculator(keras.layers.Dropout, calculate_lazy_output_shapes)
register_shape_calculator(keras.layers.SpatialDropout1D, calculate_lazy_output_shapes)
register_shape_calculator(keras.layers.SpatialDropout2D, calculate_lazy_output_shapes)
register_shape_calculator(keras.layers.SpatialDropout3D, calculate_lazy_output_shapes)
op_domain='ai.onnx.ml',
name=scope.get_unique_operator_name('ArrayFeatureExtractor'))
register_converter('pyspark.ml.feature.ChiSqSelectorModel', convert_chi_sq_selector)
def calculate_chi_sq_selector_shapes(operator):
check_input_and_output_numbers(operator, input_count_range=1, output_count_range=1)
check_input_and_output_types(operator,
good_input_types=[FloatTensorType, Int64TensorType, StringTensorType])
operator.outputs[0].type = copy.deepcopy(operator.inputs[0].type)
operator.outputs[0].type.shape[1] = len(operator.raw_operator.selectedFeatures)
register_shape_calculator('pyspark.ml.feature.ChiSqSelectorModel', calculate_chi_sq_selector_shapes)
container.add_initializer(pc_tensor, onnx_proto.TensorProto.FLOAT,
[op.pc.numRows, op.pc.numCols], list(op.pc.toArray().flatten()))
apply_matmul(scope, [operator.inputs[0].full_name, pc_tensor], operator.output_full_names, container)
register_converter('pyspark.ml.feature.PCAModel', convert_sparkml_pca)
def calculate_sparkml_pca_output_shapes(operator):
check_input_and_output_numbers(operator, output_count_range=1)
check_input_and_output_types(operator, good_input_types=[FloatTensorType])
N = operator.inputs[0].type.shape[0]
operator.outputs[0].type = FloatTensorType([N, operator.raw_operator.getOrDefault('k')])
register_shape_calculator('pyspark.ml.feature.PCAModel', calculate_sparkml_pca_output_shapes)
import numpy as np
import numbers
import six
from ...common._registration import register_shape_calculator
from ...common.shape_calculator import calculate_linear_classifier_output_shapes
register_shape_calculator('SklearnLinearClassifier', calculate_linear_classifier_output_shapes)
register_shape_calculator('SklearnDecisionTreeClassifier', calculate_linear_classifier_output_shapes)
register_shape_calculator('SklearnRandomForestClassifier', calculate_linear_classifier_output_shapes)
register_shape_calculator('SklearnExtraTreesClassifier', calculate_linear_classifier_output_shapes)
register_shape_calculator('SklearnGradientBoostingClassifier', calculate_linear_classifier_output_shapes)
register_shape_calculator('SklearnBernoulliNB', calculate_linear_classifier_output_shapes)
register_shape_calculator('SklearnMultinomialNB', calculate_linear_classifier_output_shapes)
register_shape_calculator('SklearnKNeighborsClassifier', calculate_linear_classifier_output_shapes)
register_shape_calculator(keras.layers.advanced_activations.Softmax, calculate_lazy_output_shapes)
if StrictVersion(keras.__version__) >= StrictVersion('2.2.0'):
register_shape_calculator(keras.layers.advanced_activations.ReLU, calculate_lazy_output_shapes)
# Concate
register_shape_calculator(keras.layers.Concatenate, calculate_lazy_output_shapes)
# Cropping
register_shape_calculator(keras.layers.Cropping1D, calculate_lazy_output_shapes)
register_shape_calculator(keras.layers.Cropping2D, calculate_lazy_output_shapes)
register_shape_calculator(keras.layers.Cropping3D, calculate_lazy_output_shapes)
# Local Pooling
register_shape_calculator(keras.layers.MaxPooling1D, calculate_lazy_output_shapes)
register_shape_calculator(keras.layers.MaxPooling2D, calculate_lazy_output_shapes)
register_shape_calculator(keras.layers.MaxPooling3D, calculate_lazy_output_shapes)
register_shape_calculator(keras.layers.AveragePooling1D, calculate_lazy_output_shapes)
register_shape_calculator(keras.layers.AveragePooling2D, calculate_lazy_output_shapes)
register_shape_calculator(keras.layers.AveragePooling3D, calculate_lazy_output_shapes)
# Global Pooling
register_shape_calculator(keras.layers.GlobalMaxPooling1D, calculate_lazy_output_shapes)
register_shape_calculator(keras.layers.GlobalMaxPooling2D, calculate_lazy_output_shapes)
register_shape_calculator(keras.layers.GlobalMaxPooling3D, calculate_lazy_output_shapes)
register_shape_calculator(keras.layers.GlobalAveragePooling1D, calculate_lazy_output_shapes)
register_shape_calculator(keras.layers.GlobalAveragePooling2D, calculate_lazy_output_shapes)
register_shape_calculator(keras.layers.GlobalAveragePooling3D, calculate_lazy_output_shapes)
# Flatten
register_shape_calculator(keras.layers.Flatten, calculate_lazy_output_shapes)
# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
# --------------------------------------------------------------------------
from ...common._registration import register_shape_calculator
from ...common.shape_calculator import calculate_linear_regressor_output_shapes
register_shape_calculator('SklearnElasticNetRegressor', calculate_linear_regressor_output_shapes)
register_shape_calculator('SklearnLinearRegressor', calculate_linear_regressor_output_shapes)
register_shape_calculator('SklearnLinearSVR', calculate_linear_regressor_output_shapes)
register_shape_calculator('SklearnDecisionTreeRegressor', calculate_linear_regressor_output_shapes)
register_shape_calculator('SklearnRandomForestRegressor', calculate_linear_regressor_output_shapes)
register_shape_calculator('SklearnExtraTreesRegressor', calculate_linear_regressor_output_shapes)
register_shape_calculator('SklearnGradientBoostingRegressor', calculate_linear_regressor_output_shapes)
register_shape_calculator('SklearnKNeighborsRegressor', calculate_linear_regressor_output_shapes)
register_shape_calculator('SklearnLassoLars', calculate_linear_regressor_output_shapes)
register_shape_calculator('SklearnRidge', calculate_linear_regressor_output_shapes)
import keras
from distutils.version import StrictVersion
from ...common._registration import register_shape_calculator
def calculate_lazy_output_shapes(operator):
pass
# Activation
register_shape_calculator(keras.layers.Activation, calculate_lazy_output_shapes)
register_shape_calculator(keras.layers.advanced_activations.LeakyReLU, calculate_lazy_output_shapes)
register_shape_calculator(keras.layers.advanced_activations.ThresholdedReLU, calculate_lazy_output_shapes)
register_shape_calculator(keras.layers.advanced_activations.ELU, calculate_lazy_output_shapes)
register_shape_calculator(keras.layers.advanced_activations.PReLU, calculate_lazy_output_shapes)
if StrictVersion(keras.__version__) >= StrictVersion('2.1.3'):
register_shape_calculator(keras.layers.advanced_activations.Softmax, calculate_lazy_output_shapes)
if StrictVersion(keras.__version__) >= StrictVersion('2.2.0'):
register_shape_calculator(keras.layers.advanced_activations.ReLU, calculate_lazy_output_shapes)
# Concate
register_shape_calculator(keras.layers.Concatenate, calculate_lazy_output_shapes)
# Cropping
register_shape_calculator(keras.layers.Cropping1D, calculate_lazy_output_shapes)
register_shape_calculator(keras.layers.Cropping2D, calculate_lazy_output_shapes)
register_shape_calculator(keras.layers.Cropping3D, calculate_lazy_output_shapes)
# Local Pooling
register_shape_calculator(keras.layers.MaxPooling1D, calculate_lazy_output_shapes)
register_shape_calculator(keras.layers.MaxPooling2D, calculate_lazy_output_shapes)
import numbers
from keras.layers import LSTM, SimpleRNN, GRU
from ...common._registration import register_shape_calculator
def calculate_keras_lstm_output_shapes(operator):
op = operator.raw_operator
if isinstance(op.output_shape[0], collections.Iterable):
operator.outputs[0].type.shape = list(i if isinstance(i, numbers.Integral) else 'None'
for i in op.output_shape[0])
else:
operator.outputs[0].type.shape = list(i if isinstance(i, numbers.Integral) else 'None' for i in op.output_shape)
register_shape_calculator(LSTM, calculate_keras_lstm_output_shapes)
register_shape_calculator(SimpleRNN, calculate_keras_lstm_output_shapes)
register_shape_calculator(GRU, calculate_keras_lstm_output_shapes)
is_case_sensitive=1 if op.getCaseSensitive() else 0,
stopwords=op.getStopWords())
register_converter('pyspark.ml.feature.StopWordsRemover', convert_sparkml_stop_words_remover)
def calculate_sparkml_stop_words_remover_output_shapes(operator):
check_input_and_output_numbers(operator, output_count_range=1)
check_input_and_output_types(operator,
good_input_types=[StringTensorType])
input_shape = copy.deepcopy(operator.inputs[0].type.shape)
operator.outputs[0].type = StringTensorType(input_shape)
register_shape_calculator('pyspark.ml.feature.StopWordsRemover', calculate_sparkml_stop_words_remover_output_shapes)