Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def _print_summary(method, order, x_values, scales):
print(scales)
header = 'method="{}", order={}, x_values={}:'.format(method, order, str(x_values))
print(header)
for n in scales:
print('n={}, mean scale={:.2f}, median scale={:.2f}'.format(n,
np.mean(scales[n]),
np.median(scales[n])))
print('Default scale with ' + header)
for n in scales:
print('n={}, scale={:.2f}'.format(n, default_scale(method, n, order)))
n, method, order = fd.n, fd.method, fd.order
if dfun is None:
return dict(n=n, order=order, method=method, fun=name,
error=np.nan, scale=np.nan, x=np.nan)
relativ_errors = _compute_relative_errors(x, dfun, fd, scales)
if not np.isfinite(relativ_errors).any():
return dict(n=n, order=order, method=method, fun=name,
error=np.nan, scale=np.nan)
if show_plot:
txt = ['', "1'st", "2'nd", "3'rd", "4'th", "5'th", "6'th",
"7th"] + ["%d'th" % i for i in range(8, 25)]
title = "The %s derivative using %s, order=%d" % (txt[n], method, order)
scale0 = default_scale(method, n, order)
plot_error(scales, relativ_errors, scale0, title, label=name)
i = np.nanargmin(relativ_errors)
error = float('{:.3g}'.format(relativ_errors[i]))
return dict(n=n, order=order, method=method, fun=name,
error=error, scale=scales[i], x=x)