How to use the nilearn.plotting function in nilearn

To help you get started, we’ve selected a few nilearn examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github braindynamicslab / dyneusr / dyneusr / tools / mixture.py View on Github external
# grab center coordinates for atlas labels
    atlas = kwargs.pop('atlas', data.atlas)
    coords = plotting.find_parcellation_cut_coords(labels_img=atlas)

    # assign node colors
    cmap = kwargs.pop('cmap', 'jet')
    node_cmap = plt.get_cmap('bone')
    node_norm = mpl.colors.Normalize(vmin=-0.8, vmax=1.2)
    node_colors = np.ravel([_[-1] for i,_ in enumerate(coords)])
    node_colors = [_ / np.max(node_colors) for _ in node_colors]
    node_colors = node_cmap(node_norm(node_colors))

    # plot connectome matrix
    fig = plt.figure(figsize=(12,5))
    ax = plt.subplot2grid((1, 2), (0, 1),  rowspan=1, colspan=1) 
    display = plotting.plot_matrix(
        connectivity,
        vmin=-.5, vmax=.5, colorbar=True, cmap=cmap,
        axes=ax, #title='{} Matrix'.format(metric.title()),
        )

    # plot connectome with 99.7% edge strength in the connectivity
    ax = plt.subplot2grid((1, 2), (0, 0), rowspan=1, colspan=1)
    display = plotting.plot_connectome(
        connectivity, coords,
        edge_threshold="99.9%", display_mode='z',
        node_color=node_colors, node_size=20, edge_kwargs=dict(lw=4),
        edge_vmin=-.8, edge_vmax=.8, edge_cmap=cmap,
        colorbar=False, black_bg=not True, alpha=0.5,
        annotate=False,
        axes=ax,
        )
github nidata / nidata / nidata / _external / nilearn / examples / connectivity / plot_multi_subject_connectome.py View on Github external
def plot_matrices(cov, prec, title):
    """Plot covariance and precision matrices, for a given processing. """

    prec = prec.copy()  # avoid side effects

    # Put zeros on the diagonal, for graph clarity.
    size = prec.shape[0]
    prec[list(range(size)), list(range(size))] = 0
    span = max(abs(prec.min()), abs(prec.max()))

    # Display covariance matrix
    plt.figure()
    plt.imshow(cov, interpolation="nearest",
               vmin=-1, vmax=1, cmap=plotting.cm.bwr)
    plt.colorbar()
    plt.title("%s / covariance" % title)

    # Display precision matrix
    plt.figure()
    plt.imshow(prec, interpolation="nearest",
               vmin=-span, vmax=span,
               cmap=plotting.cm.bwr)
    plt.colorbar()
    plt.title("%s / precision" % title)
github nighres / nighres / examples / example_03_brain_coregistration.py View on Github external
deformed = nighres.registration.apply_coordinate_mappings(
                        image=dataset1['t1map'],
                        mapping1=syn_results['mapping'],
                        save_data=True, file_name="sub001_sess1_t1map",
                        output_dir=out_dir, overwrite=False)

inverse = nighres.registration.apply_coordinate_mappings(
                        image=dataset2['t1w'],
                        mapping1=syn_results['inverse'],
                        save_data=True, file_name="sub002_sess1_t1w",
                        output_dir=out_dir, overwrite=False)

############################################################################
# Now we look at the coregistered images from applying the deformation
if not skip_plots:
    plotting.plot_img(deformed['result'],
                      annotate=False,  draw_cross=False)
    plotting.plot_img(inverse['result'],
                      annotate=False,  draw_cross=False)

############################################################################

#############################################################################
# If the example is not run in a jupyter notebook, render the plots:
if not skip_plots:
    plotting.show()
github nilearn / nilearn / examples / 01_plotting / plot_multiscale_parcellations.py View on Github external
###############################################################################
# Visualizing brain parcellations
# -------------------------------

# import plotting module and use `plot_roi` function, since the maps are in 3D
from nilearn import plotting

# The coordinates of all plots are selected automatically by itself
# We manually change the colormap of our choice
plotting.plot_roi(networks_64, cmap=plotting.cm.bwr,
                  title='64 regions of brain clusters')

plotting.plot_roi(networks_197, cmap=plotting.cm.bwr,
                  title='197 regions of brain clusters')

plotting.plot_roi(networks_444, cmap=plotting.cm.bwr_r,
                  title='444 regions of brain clusters')

plotting.show()
github nilearn / nilearn / examples / 01_plotting / plot_surf_stat_map.py View on Github external
hemi='left', view='medial', colorbar=True,
                            title='Plotting without background')

###############################################################################
# Many different options are available for plotting, for example thresholding,
# or using custom colormaps
plotting.plot_surf_stat_map(fsaverage['pial_left'], stat_map=stat_map,
                            hemi='left', view='medial', colorbar=True,
                            bg_map=fsaverage['sulc_left'], bg_on_data=True,
                            cmap='Spectral', threshold=.5,
                            title='Threshold and colormap')

###############################################################################
# The plots can be saved to file, in which case the display is closed after
# creating the figure
plotting.plot_surf_stat_map(fsaverage['infl_left'], stat_map=stat_map,
                            hemi='left', bg_map=fsaverage['sulc_left'],
                            bg_on_data=True, threshold=.6, colorbar=True,
                            output_file='plot_surf_stat_map.png')

plotting.show()
github nilearn / nilearn / examples / 01_plotting / plot_surf_atlas.py View on Github external
# Display Destrieux parcellation on inflated fsaverage5 surface
plotting.plot_surf_roi(fsaverage['infl_left'], roi_map=parcellation,
                       hemi='left', view='lateral',
                       bg_map=fsaverage['sulc_left'], bg_on_data=True,
                       darkness=.5)

###############################################################################
# Display Destrieux parcellation with different views: posterior
plotting.plot_surf_roi(fsaverage['infl_left'], roi_map=parcellation,
                       hemi='left', view='posterior',
                       bg_map=fsaverage['sulc_left'], bg_on_data=True,
                       darkness=.5)

###############################################################################
# Display Destrieux parcellation with different views: ventral
plotting.plot_surf_roi(fsaverage['infl_left'], roi_map=parcellation,
                       hemi='left', view='ventral',
                       bg_map=fsaverage['sulc_left'], bg_on_data=True,
                       darkness=.5)
plotting.show()


##############################################################################
# 3D visualization in a web browser
# ---------------------------------
# An alternative to :func:`nilearn.plotting.plot_surf_roi` is to use
# :func:`nilearn.plotting.view_surf` for more interactive
# visualizations in a web browser. See :ref:`interactive-surface-plotting` for
# more details.

view = plotting.view_surf(fsaverage.infl_left, parcellation,
                          cmap='gist_ncar', symmetric_cmap=False)
github braindynamicslab / dyneusr / dyneusr / tools / mixture.py View on Github external
# extract time series from all subjects and concatenate them
    mm = data.X[index, :].copy()
    time_series = [np.vstack(mm)]

    # calculate correlation matrices across indexed frames in data 
    connectome_measure = ConnectivityMeasure(kind=metric)
    connectome_measure.fit_transform(time_series)
    connectivity = connectome_measure.mean_
    np.fill_diagonal(connectivity, 0)
    #connectivity[np.abs(connectivity) < 0.2] = 0.0 


    # grab center coordinates for atlas labels
    atlas = kwargs.pop('atlas', data.atlas)
    coords = plotting.find_parcellation_cut_coords(labels_img=atlas)

    # assign node colors
    cmap = kwargs.pop('cmap', 'jet')
    node_cmap = plt.get_cmap('bone')
    node_norm = mpl.colors.Normalize(vmin=-0.8, vmax=1.2)
    node_colors = np.ravel([_[-1] for i,_ in enumerate(coords)])
    node_colors = [_ / np.max(node_colors) for _ in node_colors]
    node_colors = node_cmap(node_norm(node_colors))

    # plot connectome matrix
    fig = plt.figure(figsize=(12,5))
    ax = plt.subplot2grid((1, 2), (0, 1),  rowspan=1, colspan=1) 
    display = plotting.plot_matrix(
        connectivity,
        vmin=-.5, vmax=.5, colorbar=True, cmap=cmap,
        axes=ax, #title='{} Matrix'.format(metric.title()),
github nilearn / nilearn / examples / 04_manipulating_images / plot_smooth_mean_image.py View on Github external
data.func[0])

first_epi_file = data.func[0]

# First the compute the mean image, from the 4D series of image
mean_func = image.mean_img(first_epi_file)

# Then we smooth, with a varying amount of smoothing, from none to 20mm
# by increments of 5mm
for smoothing in range(0, 25, 5):
    smoothed_img = image.smooth_img(mean_func, smoothing)
    plotting.plot_epi(smoothed_img,
                      title="Smoothing %imm" % smoothing)


plotting.show()
github nilearn / nilearn / examples / 03_connectivity / plot_rest_parcellations.py View on Github external
#
# Grab parcellations of brain image stored in attribute `labels_img_`
kmeans_labels_img = kmeans.labels_img_

plotting.plot_roi(kmeans_labels_img, mean_func_img,
                  title="KMeans parcellation",
                  display_mode='xz')

# kmeans_labels_img is a Nifti1Image object, it can be saved to file with
# the following code:
kmeans_labels_img.to_filename('kmeans_parcellation.nii.gz')

##################################################################
# Finally show them

plotting.show()