Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
#!/usr/bin/env python
import os, sys, multiprocessing, argparse, re, glob
parser = argparse.ArgumentParser()
parser.add_argument('-d', '--output-dir', metavar='DIR', required=True,
help='Store testgen shards in DIR')
parser.add_argument('-j', '--jobs', type=int,
default=multiprocessing.cpu_count(),
help='Number of shards (and resulting make jobs)')
parser.usage = parser.format_usage().split(':',1)[1].strip() + ' < testgen.c'
args = parser.parse_args()
shard_names = [os.path.join(args.output_dir, 'testgen.%d.c' % i)
for i in xrange(max(args.jobs - 1, 1))]
if set(glob.glob(os.path.join(args.output_dir, 'testgen.*.c'))) - \
set(shard_names):
parser.error('Output directory is dirty')
outarray = file(os.path.join(args.output_dir, 'testgen.c'), 'w')
outshards = [file(path, 'w') for path in shard_names]
testparts = [p + '\n\n' for p in sys.stdin.read().split('\n\n')]
# Emit common headers
while testparts:
def main(args):
parser = argparse.ArgumentParser()
parser.add_argument('patterns', metavar='pattern', nargs='*',
help='test patterns.')
parser.add_argument('-j', '--num-processes',
type=int, default=multiprocessing.cpu_count(),
help='num processes.')
parser.add_argument('-e', '--exe', help='path to tester')
parser.add_argument('-v', '--verbose', action='count', default=0,
help='show more info')
parser.add_argument('-g', '--generate', action='store_true',
help='generate test result markdown')
options = parser.parse_args(args)
pattern_re = common.MakePatternRE(options.patterns)
passed = 0
if not os.path.exists(TEST_RESULT_DIR):
os.makedirs(TEST_RESULT_DIR)
tests = [Test(*test) for test in json.load(open(TEST_JSON))]
tests = [test for test in tests if pattern_re.match(test.rom)]
start_time = time.time()
print '[+] Success: {0}/{1}'.format(creds[0], creds[1])
success_queue.put(creds)
return
if __name__ == '__main__':
if len(sys.argv) != 4:
print 'USAGE: brute_http_basic.py url userfile passfile'
sys.exit()
cred_queue = multiprocessing.Queue()
success_queue = multiprocessing.Queue()
procs = []
# Create one thread for each processor.
for i in range(multiprocessing.cpu_count()):
p = multiprocessing.Process(target=worker, args=(sys.argv[1],
cred_queue,
success_queue))
procs.append(p)
p.start()
for user in open(sys.argv[2]):
user = user.rstrip('\r\n')
if user == '':
continue
for pwd in open(sys.argv[3]):
pwd = pwd.rstrip('\r\n')
cred_queue.put((user, pwd))
# Wait for all worker processes to finish
for p in procs:
categories: a list of categories to include in each batch.
batch_size: number of data items for each batch.
ahead: the number of data items to prefetch ahead.
'''
self.segmentation = segmentation
self.split = split
self.randomize = randomize
self.random = random.Random()
if randomize is not True:
self.random.seed(randomize)
self.categories = categories
self.once = once
self.batch_size = batch_size
self.ahead = ahead
# Initialize the multiprocessing pool
n_procs = cpu_count()
if thread:
self.pool = ThreadPool(processes=n_procs)
else:
original_sigint_handler = setup_sigint()
self.pool = Pool(processes=n_procs, initializer=setup_sigint)
restore_sigint(original_sigint_handler)
# Prefilter the image indexes of interest
if start is None:
start = 0
if end is None:
end = segmentation.size()
self.indexes = range(start, end)
if split:
self.indexes = [i for i in self.indexes
if segmentation.split(i) == split]
if self.randomize:
def main():
options = parse_option()
initialize_log_handler(options.log_level)
logger = logbook.Logger("pingparsing cli")
logger.level = options.log_level
set_log_level(options.log_level)
output = {}
use_stdin, found_stdin_specifier = is_use_stdin()
if not use_stdin and not found_stdin_specifier:
from concurrent import futures
max_workers = (
multiprocessing.cpu_count() * 2 if options.max_workers is None else options.max_workers
)
count, deadline, timeout = get_ping_param(options)
logger.debug(
"max-workers={}, count={}, deadline={}, timeout={}".format(
max_workers, count, deadline, timeout
)
)
try:
with futures.ProcessPoolExecutor(max_workers) as executor:
future_list = []
for dest_or_file in options.destination_or_file:
logger.debug("start {}".format(dest_or_file))
future_list.append(
executor.submit(
parse_ping,
@timecall
def calculate_d(g_dash, database, a, e1_type, e2_type, index):
# contains facts described in the corpus that are not in the system output nor in the database
#
# by applying the PMI of the facts not in the database (i.e., G' \in D)
# we determine |G \ D|, then we can estimate |d| = |G \ D| - |a|
#
# |G \ D|
# determine facts not in the database, with high PMI, that is, facts that are true and are not in the database
manager = multiprocessing.Manager()
queue = manager.Queue()
g_minus_d = manager.list()
num_cpus = multiprocessing.cpu_count()
print len(g_dash)
c = 0
print "Storing g_dash in a shared Queue"
for r in g_dash:
c += 1
if c % 25000 == 0:
print c
queue.put(r)
print "queue size", queue.qsize()
# calculate PMI for r not in database
processes = [multiprocessing.Process(target=query_thread, args=(queue, database, g_minus_d, e1_type, e2_type, index)) for i in range(num_cpus)]
for proc in processes:
proc.start()
if procNumber == 0:
print("ERROR!")
return
splicedMP3 = splitTable(mp3Files, procNumber)
for mp3 in splicedMP3:
thread = ImportBulkThread(0, mp3, convert, mp3FileReference, coverPath)
threads.append(thread)
thread.start()
# FLAC file processor
if len(flacFiles) != 0:
procNumber = multiprocessing.cpu_count()
while len(flacFiles) < procNumber:
procNumber -= 1
if procNumber == 0:
return
splicedFLAC = splitTable(flacFiles, multiprocessing.cpu_count())
for flac in splicedFLAC:
thread = ImportBulkThread(1, flac, convert, flacFileReference, coverPath)
threads.append(thread)
thread.start()
# OGG file processor
if len(oggFiles) != 0:
procNumber = multiprocessing.cpu_count()
while len(oggFiles) < procNumber:
procNumber -= 1
if procNumber == 0:
return
splicedOGG = splitTable(oggFiles, multiprocessing.cpu_count())
for ogg in splicedOGG:
thread = ImportBulkThread(1, ogg, convert, oggFileReference, coverPath)
threads.append(thread)
thread.start()
def usable_cpu_count():
cpus = cpu_count()
if cpus > 7:
max_processes = cpus - 3
elif cpus > 3:
max_processes = cpus - 2
elif cpus > 1:
max_processes = cpus - 1
else:
max_processes = 1
return max_processes
def _getTertiarySOLASpec(self, peakHourMatrixId, appliedTollFactor, costAttributeId):
if self.PerformanceFlag:
numberOfPocessors = multiprocessing.cpu_count()
else:
numberOfPocessors = max(multiprocessing.cpu_count() - 1, 1)
modeId = _util.getScenarioModes(self.Scenario, ['AUTO'])[0][0]
#Returns a list of tuples. Emme guarantees that there is always
#one auto mode.
if self.PerformanceFlag:
numberOfPocessors = multiprocessing.cpu_count()
else:
numberOfPocessors = max(multiprocessing.cpu_count() - 2, 1)
return {
"type": "SOLA_TRAFFIC_ASSIGNMENT",
"classes": [
{
"mode": modeId,
"demand": peakHourMatrixId,
mp = False
nan= 0
processes = []
single = False
cache_file = None
try:
temp = RopperService.CACHE_FOLDER
cache_file = temp + os.path.sep + self.__getCacheFileName(file)
if not os.path.exists(cache_file):
if not os.path.exists(cache_file+'_%d' % 1):
return
else:
if isWindows():
raise RopperError('Cache has to be cleared.')
mp = True and multiprocessing.cpu_count()>1
else:
single = True
if self.__callbacks and hasattr(self.__callbacks, '__message__'):
self.__callbacks.__message__('Load gadgets from cache')
if self.__callbacks and hasattr(self.__callbacks, '__gadgetSearchProgress__'):
self.__callbacks.__gadgetSearchProgress__(None, [], 0)
if not mp:
all_gadgets = []
if single:
with open(cache_file,'rb') as f:
data = f.read()
all_gadgets.extend(eval(decode(data,'zip')))
if self.__callbacks and hasattr(self.__callbacks, '__gadgetSearchProgress__'):
self.__callbacks.__gadgetSearchProgress__(None, all_gadgets, 1.0)
else:
for i in range(1,RopperService.CACHE_FILE_COUNT+1):