How to use mtcnn - 10 common examples

To help you get started, we’ve selected a few mtcnn examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github foamliu / InsightFace-v3 / test / test_align.py View on Github external
cv.circle(img_raw, (landms[1], landms[6]), 1, (0, 255, 255), 4)
        cv.circle(img_raw, (landms[2], landms[7]), 1, (255, 0, 255), 4)
        cv.circle(img_raw, (landms[3], landms[8]), 1, (0, 255, 0), 4)
        cv.circle(img_raw, (landms[4], landms[9]), 1, (255, 0, 0), 4)

    # save image

    cv.imwrite('images/result.jpg', img_raw)
    cv.imshow('image', img_raw)
    cv.waitKey(0)


if __name__ == "__main__":
    full_path = 'test/Jason Behr_27968.JPG'
    img = Image.open(full_path).convert('RGB')
    bboxes, landmarks = mtcnn.detect_faces(img)
    print(bboxes)
    print(landmarks)
    show_bboxes(full_path, bboxes, landmarks)

    bboxes, landmarks = retinaface.detect_faces(img)
    print(bboxes)
    print(landmarks)
    show_bboxes(full_path, bboxes, landmarks)
github ipazc / mtcnn / tests / test_mtcnn.py View on Github external
def test_mtcnn_multiple_instances(self):
        """
        Multiple instances of MTCNN can be created in the same thread.
        :return:
        """
        detector_1 = MTCNN(steps_threshold=[.2, .7, .7])
        detector_2 = MTCNN(steps_threshold=[.1, .1, .1])

        ivan = cv2.imread("ivan.jpg")

        faces_1 = detector_1.detect_faces(ivan)
        faces_2 = detector_2.detect_faces(ivan)

        self.assertEqual(len(faces_1), 1)
        self.assertGreater(len(faces_2), 1)
github ipazc / mtcnn / tests / test_mtcnn.py View on Github external
def setUpClass(cls):
        global mtcnn
        mtcnn = MTCNN()
github ipazc / mtcnn / tests / test_mtcnn.py View on Github external
def test_mtcnn_multiple_instances(self):
        """
        Multiple instances of MTCNN can be created in the same thread.
        :return:
        """
        detector_1 = MTCNN(steps_threshold=[.2, .7, .7])
        detector_2 = MTCNN(steps_threshold=[.1, .1, .1])

        ivan = cv2.imread("ivan.jpg")

        faces_1 = detector_1.detect_faces(ivan)
        faces_2 = detector_2.detect_faces(ivan)

        self.assertEqual(len(faces_1), 1)
        self.assertGreater(len(faces_2), 1)
github ipazc / mtcnn / tests / test_mtcnn.py View on Github external
def test_detect_faces_invalid_content(self):
        """
        MTCNN detects invalid images
        :return:
        """
        ivan = cv2.imread("example.py")

        with self.assertRaises(InvalidImage):
            result = mtcnn.detect_faces(ivan)  # type: list
github lucasxlu / XCloud / utils / feat_extractor.py View on Github external
def detect_face(img_path, detector=MTCNN()):
    """
    detect face with MTCNN
    :param img_path:
    :return:
    """
    img = cv2.imread(img_path)
    if detector is None:
        detector = MTCNN()
    mtcnn_result = detector.detect_faces(img)

    return mtcnn_result
github golmschenk / sr-gan / age / data.py View on Github external
def __init__(self, preprocessed_image_size=128):
        from mtcnn.mtcnn import MTCNN
        self.database_directory = '../LAP Apparent Age V2'
        self.face_detector = MTCNN(steps_threshold=[0.5, 0.6, 0.6])
        self.preprocessed_image_size = preprocessed_image_size
github instabotai / instabotai / instabotai / ai.py View on Github external
def face_detection(username):
        x = 0
        ''' Get user media and scan it for a face'''
        user_id = bot.get_user_id_from_username(username)
        medias = bot.get_user_medias(user_id, filtration=False)
        for media in medias:
            while x < 1:
                try:
                    bot.logger.info(media)
                    path = bot.download_photo(media, folder=username)
                    img = cv2.imread(path)
                    detector = MTCNN()
                    detect = detector.detect_faces(img)
                    if not detect:
                        Bots.save_user_info(ig_username, "no face detected " + bot.get_link_from_media_id(media))
                        bot.logger.info("save user info")
                        bot.logger.info("no face detected " + bot.get_link_from_media_id(media))
                        x += 1

                    elif detect:
                        Bots.save_user_info(ig_username, "there was a face detected")
                        bot.logger.info("save user info")
                        bot.logger.info("there was a face detected")
                        bot.api.like(media)
                        display_url = bot.get_link_from_media_id(media)
                        bot.logger.info("liked " + display_url + " by " + username)
                        Bots.save_user_info(ig_username, "liked " + display_url + " by " + username)
                        Bots.payment_system()
github shamangary / FSA-Net / data / TYY_create_db_biwi.py View on Github external
def main():
	args = get_args()
	mypath = args.db
	output_path = args.output
	img_size = args.img_size
	ad = args.ad

	isPlot = True
	detector = MTCNN()

	onlyfiles_png = []
	onlyfiles_txt = []
	for num in range(0,24):
		if num<9:
			mypath_obj = mypath+'/0'+str(num+1)
		else:
			mypath_obj = mypath+'/'+str(num+1)
		print(mypath_obj)
		onlyfiles_txt_temp = [f for f in listdir(mypath_obj) if isfile(join(mypath_obj, f)) and join(mypath_obj, f).endswith('.txt')]
		onlyfiles_png_temp = [f for f in listdir(mypath_obj) if isfile(join(mypath_obj, f)) and join(mypath_obj, f).endswith('.png')]
	
		onlyfiles_txt_temp.sort()
		onlyfiles_png_temp.sort()

		onlyfiles_txt.append(onlyfiles_txt_temp)
github lucasxlu / XCloud / utils / feat_extractor.py View on Github external
def detect_face(img_path, detector=MTCNN()):
    """
    detect face with MTCNN
    :param img_path:
    :return:
    """
    img = cv2.imread(img_path)
    if detector is None:
        detector = MTCNN()
    mtcnn_result = detector.detect_faces(img)

    return mtcnn_result