How to use the mtcnn.box_utils.nms function in mtcnn

To help you get started, we’ve selected a few mtcnn examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github Team-Neighborhood / awesome-face-detection / mtcnn / detector.py View on Github external
# STAGE 2

    img_boxes = get_image_boxes(bounding_boxes, image, size=24)
    img_boxes = torch.FloatTensor(img_boxes)
    with torch.no_grad():
        output = rnet(img_boxes)
    offsets = output[0].data.numpy()  # shape [n_boxes, 4]
    probs = output[1].data.numpy()  # shape [n_boxes, 2]

    keep = np.where(probs[:, 1] > thresholds[1])[0]
    bounding_boxes = bounding_boxes[keep]
    bounding_boxes[:, 4] = probs[keep, 1].reshape((-1,))
    offsets = offsets[keep]

    keep = nms(bounding_boxes, nms_thresholds[1])
    bounding_boxes = bounding_boxes[keep]
    bounding_boxes = calibrate_box(bounding_boxes, offsets[keep])
    bounding_boxes = convert_to_square(bounding_boxes)
    bounding_boxes[:, 0:4] = np.round(bounding_boxes[:, 0:4])

    # STAGE 3

    img_boxes = get_image_boxes(bounding_boxes, image, size=48)
    if len(img_boxes) == 0: 
        return [], []
    img_boxes = torch.FloatTensor(img_boxes)
    with torch.no_grad():
        output = onet(img_boxes)
    landmarks = output[0].data.numpy()  # shape [n_boxes, 10]
    offsets = output[1].data.numpy()  # shape [n_boxes, 4]
    probs = output[2].data.numpy()  # shape [n_boxes, 2]
github foamliu / InsightFace-v2 / mtcnn / detector.py View on Github external
# STAGE 1

        # it will be returned
        bounding_boxes = []

        # run P-Net on different scales
        for s in scales:
            boxes = run_first_stage(image, pnet, scale=s, threshold=thresholds[0])
            bounding_boxes.append(boxes)

        # collect boxes (and offsets, and scores) from different scales
        bounding_boxes = [i for i in bounding_boxes if i is not None]
        bounding_boxes = np.vstack(bounding_boxes)

        keep = nms(bounding_boxes[:, 0:5], nms_thresholds[0])
        bounding_boxes = bounding_boxes[keep]

        # use offsets predicted by pnet to transform bounding boxes
        bounding_boxes = calibrate_box(bounding_boxes[:, 0:5], bounding_boxes[:, 5:])
        # shape [n_boxes, 5]

        bounding_boxes = convert_to_square(bounding_boxes)
        bounding_boxes[:, 0:4] = np.round(bounding_boxes[:, 0:4])

        # STAGE 2

        img_boxes = get_image_boxes(bounding_boxes, image, size=24)
        img_boxes = Variable(torch.FloatTensor(img_boxes))
        output = rnet(img_boxes)
        offsets = output[0].data.cpu().numpy()  # shape [n_boxes, 4]
        probs = output[1].data.cpu().numpy()  # shape [n_boxes, 2]
github foamliu / InsightFace-v2 / mtcnn / detector.py View on Github external
bounding_boxes[:, 0:4] = np.round(bounding_boxes[:, 0:4])

        # STAGE 2

        img_boxes = get_image_boxes(bounding_boxes, image, size=24)
        img_boxes = Variable(torch.FloatTensor(img_boxes))
        output = rnet(img_boxes)
        offsets = output[0].data.cpu().numpy()  # shape [n_boxes, 4]
        probs = output[1].data.cpu().numpy()  # shape [n_boxes, 2]

        keep = np.where(probs[:, 1] > thresholds[1])[0]
        bounding_boxes = bounding_boxes[keep]
        bounding_boxes[:, 4] = probs[keep, 1].reshape((-1,))
        offsets = offsets[keep]

        keep = nms(bounding_boxes, nms_thresholds[1])
        bounding_boxes = bounding_boxes[keep]
        bounding_boxes = calibrate_box(bounding_boxes, offsets[keep])
        bounding_boxes = convert_to_square(bounding_boxes)
        bounding_boxes[:, 0:4] = np.round(bounding_boxes[:, 0:4])

        # STAGE 3

        img_boxes = get_image_boxes(bounding_boxes, image, size=48)
        if len(img_boxes) == 0:
            return [], []
        img_boxes = Variable(torch.FloatTensor(img_boxes))
        output = onet(img_boxes)
        landmarks = output[0].data.cpu().numpy()  # shape [n_boxes, 10]
        offsets = output[1].data.cpu().numpy()  # shape [n_boxes, 4]
        probs = output[2].data.cpu().numpy()  # shape [n_boxes, 2]
github Team-Neighborhood / awesome-face-detection / mtcnn / detector.py View on Github external
keep = np.where(probs[:, 1] > thresholds[2])[0]
    bounding_boxes = bounding_boxes[keep]
    bounding_boxes[:, 4] = probs[keep, 1].reshape((-1,))
    offsets = offsets[keep]
    landmarks = landmarks[keep]

    # compute landmark points
    width = bounding_boxes[:, 2] - bounding_boxes[:, 0] + 1.0
    height = bounding_boxes[:, 3] - bounding_boxes[:, 1] + 1.0
    xmin, ymin = bounding_boxes[:, 0], bounding_boxes[:, 1]
    landmarks[:, 0:5] = np.expand_dims(xmin, 1) + np.expand_dims(width, 1)*landmarks[:, 0:5]
    landmarks[:, 5:10] = np.expand_dims(ymin, 1) + np.expand_dims(height, 1)*landmarks[:, 5:10]

    bounding_boxes = calibrate_box(bounding_boxes, offsets)
    keep = nms(bounding_boxes, nms_thresholds[2], mode='min')
    bounding_boxes = bounding_boxes[keep]
    landmarks = landmarks[keep]

    return bounding_boxes, landmarks
github foamliu / InsightFace-v2 / mtcnn / detector.py View on Github external
keep = np.where(probs[:, 1] > thresholds[2])[0]
        bounding_boxes = bounding_boxes[keep]
        bounding_boxes[:, 4] = probs[keep, 1].reshape((-1,))
        offsets = offsets[keep]
        landmarks = landmarks[keep]

        # compute landmark points
        width = bounding_boxes[:, 2] - bounding_boxes[:, 0] + 1.0
        height = bounding_boxes[:, 3] - bounding_boxes[:, 1] + 1.0
        xmin, ymin = bounding_boxes[:, 0], bounding_boxes[:, 1]
        landmarks[:, 0:5] = np.expand_dims(xmin, 1) + np.expand_dims(width, 1) * landmarks[:, 0:5]
        landmarks[:, 5:10] = np.expand_dims(ymin, 1) + np.expand_dims(height, 1) * landmarks[:, 5:10]

        bounding_boxes = calibrate_box(bounding_boxes, offsets)
        keep = nms(bounding_boxes, nms_thresholds[2], mode='min')
        bounding_boxes = bounding_boxes[keep]
        landmarks = landmarks[keep]

        return bounding_boxes, landmarks
github foamliu / Face-Alignment / mtcnn / detector.py View on Github external
keep = np.where(probs[:, 1] > thresholds[2])[0]
            bounding_boxes = bounding_boxes[keep]
            bounding_boxes[:, 4] = probs[keep, 1].reshape((-1,))
            offsets = offsets[keep]
            landmarks = landmarks[keep]

            # compute landmark points
            width = bounding_boxes[:, 2] - bounding_boxes[:, 0] + 1.0
            height = bounding_boxes[:, 3] - bounding_boxes[:, 1] + 1.0
            xmin, ymin = bounding_boxes[:, 0], bounding_boxes[:, 1]
            landmarks[:, 0:5] = np.expand_dims(xmin, 1) + np.expand_dims(width, 1) * landmarks[:, 0:5]
            landmarks[:, 5:10] = np.expand_dims(ymin, 1) + np.expand_dims(height, 1) * landmarks[:, 5:10]

            bounding_boxes = calibrate_box(bounding_boxes, offsets)
            keep = nms(bounding_boxes, nms_thresholds[2], mode='min')
            bounding_boxes = bounding_boxes[keep]
            landmarks = landmarks[keep]

            return bounding_boxes, landmarks
github foamliu / InsightFace-v3 / mtcnn / detector.py View on Github external
bounding_boxes[:, 0:4] = np.round(bounding_boxes[:, 0:4])

            # STAGE 2

            img_boxes = get_image_boxes(bounding_boxes, image, size=24)
            img_boxes = Variable(torch.FloatTensor(img_boxes).to(self.device))
            output = self.rnet(img_boxes)
            offsets = output[0].data.cpu().numpy()  # shape [n_boxes, 4]
            probs = output[1].data.cpu().numpy()  # shape [n_boxes, 2]

            keep = np.where(probs[:, 1] > thresholds[1])[0]
            bounding_boxes = bounding_boxes[keep]
            bounding_boxes[:, 4] = probs[keep, 1].reshape((-1,))
            offsets = offsets[keep]

            keep = nms(bounding_boxes, nms_thresholds[1])
            bounding_boxes = bounding_boxes[keep]
            bounding_boxes = calibrate_box(bounding_boxes, offsets[keep])
            bounding_boxes = convert_to_square(bounding_boxes)
            bounding_boxes[:, 0:4] = np.round(bounding_boxes[:, 0:4])

            # STAGE 3

            img_boxes = get_image_boxes(bounding_boxes, image, size=48)
            if len(img_boxes) == 0:
                return [], []
            img_boxes = Variable(torch.FloatTensor(img_boxes).to(self.device))
            output = self.onet(img_boxes)
            landmarks = output[0].data.cpu().numpy()  # shape [n_boxes, 10]
            offsets = output[1].data.cpu().numpy()  # shape [n_boxes, 4]
            probs = output[2].data.cpu().numpy()  # shape [n_boxes, 2]
github foamliu / Face-Alignment / mtcnn / detector.py View on Github external
# STAGE 1

            # it will be returned
            bounding_boxes = []

            # run P-Net on different scales
            for s in scales:
                boxes = run_first_stage(image, self.pnet, scale=s, threshold=thresholds[0])
                bounding_boxes.append(boxes)

            # collect boxes (and offsets, and scores) from different scales
            bounding_boxes = [i for i in bounding_boxes if i is not None]
            bounding_boxes = np.vstack(bounding_boxes)

            keep = nms(bounding_boxes[:, 0:5], nms_thresholds[0])
            bounding_boxes = bounding_boxes[keep]

            # use offsets predicted by pnet to transform bounding boxes
            bounding_boxes = calibrate_box(bounding_boxes[:, 0:5], bounding_boxes[:, 5:])
            # shape [n_boxes, 5]

            bounding_boxes = convert_to_square(bounding_boxes)
            bounding_boxes[:, 0:4] = np.round(bounding_boxes[:, 0:4])

            # STAGE 2

            img_boxes = get_image_boxes(bounding_boxes, image, size=24)
            img_boxes = Variable(torch.FloatTensor(img_boxes).to(self.device))
            output = self.rnet(img_boxes)
            offsets = output[0].data.cpu().numpy()  # shape [n_boxes, 4]
            probs = output[1].data.cpu().numpy()  # shape [n_boxes, 2]
github foamliu / InsightFace-v3 / mtcnn / detector.py View on Github external
# STAGE 1

            # it will be returned
            bounding_boxes = []

            # run P-Net on different scales
            for s in scales:
                boxes = run_first_stage(image, self.pnet, scale=s, threshold=thresholds[0])
                bounding_boxes.append(boxes)

            # collect boxes (and offsets, and scores) from different scales
            bounding_boxes = [i for i in bounding_boxes if i is not None]
            bounding_boxes = np.vstack(bounding_boxes)

            keep = nms(bounding_boxes[:, 0:5], nms_thresholds[0])
            bounding_boxes = bounding_boxes[keep]

            # use offsets predicted by pnet to transform bounding boxes
            bounding_boxes = calibrate_box(bounding_boxes[:, 0:5], bounding_boxes[:, 5:])
            # shape [n_boxes, 5]

            bounding_boxes = convert_to_square(bounding_boxes)
            bounding_boxes[:, 0:4] = np.round(bounding_boxes[:, 0:4])

            # STAGE 2

            img_boxes = get_image_boxes(bounding_boxes, image, size=24)
            img_boxes = Variable(torch.FloatTensor(img_boxes).to(self.device))
            output = self.rnet(img_boxes)
            offsets = output[0].data.cpu().numpy()  # shape [n_boxes, 4]
            probs = output[1].data.cpu().numpy()  # shape [n_boxes, 2]
github foamliu / InsightFace / mtcnn / first_stage.py View on Github external
sw, sh = math.ceil(width * scale), math.ceil(height * scale)
        img = image.resize((sw, sh), Image.BILINEAR)
        img = np.asarray(img, 'float32')

        img = Variable(torch.FloatTensor(_preprocess(img)).to(device))
        output = net(img)
        probs = output[1].data.cpu().numpy()[0, 1, :, :]
        offsets = output[0].data.cpu().numpy()
        # probs: probability of a face at each sliding window
        # offsets: transformations to true bounding boxes

        boxes = _generate_bboxes(probs, offsets, scale, threshold)
        if len(boxes) == 0:
            return None

        keep = nms(boxes[:, 0:5], overlap_threshold=0.5)
        return boxes[keep]