Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def main(env, savename, save_dir, replay, macro_duration, num_subs, num_rollouts, warmup_time, train_time, force_subpolicy, store):
if MPI.COMM_WORLD.Get_rank() == 0 and osp.exists(LOGDIR):
shutil.rmtree(LOGDIR)
MPI.COMM_WORLD.Barrier()
# with logger.session(dir=LOGDIR):
#train(env, savename, replay, macro_duration, num_subs, num_rollouts, warmup_time, train_time, force_subpolicy, store)
train(env, savename, save_dir, replay, macro_duration, num_subs, num_rollouts, warmup_time, train_time, force_subpolicy, store)
if __name__ == '__main__':
for role, agent in agents.items():
param_noise_distances[role] = agent.adapt_param_noise()
for train_step in range(n_batches):
critic_losses = {}
actor_losses = {}
for role, agent in agents.items():
critic_losses[role], actor_losses[role] = agent.train()
for agent in agents.values():
agent.update_target_net()
batch += 1
if heatmaps:
train_rollout_worker.flush_env_location_records()
MPI.COMM_WORLD.Barrier()
logger.info("Creating heatmap...")
if rank == 0:
heatmap_save_path = generate_3d_fetch_stack_heatmap_from_npy_records(
working_dir=os.path.join(logger.get_dir(), 'heatmaps'),
file_prefix='epoch{}'.format(epoch),
delete_records=True
)
logger.info("Heatmap saved to {}".format(heatmap_save_path))
# test
if do_evaluation:
eval_rollout_worker.clear_history()
for _ in range(n_test_rollouts):
eval_rollout_worker.generate_rollouts()
current_score = mpi_average(eval_rollout_worker.current_score())
col_starts[2] = n
else:
# make sure that dtype is right....
col_starts = np.array(col_starts, dtype = dtype)
if check_partitioning:
ch = get_assumed_patitioning(m)
if (row_starts[0] != ch[0] or
row_starts[1] != ch[1] or
nrows != ch[2]):
for k in range(num_proc):
MPI.COMM_WORLD.Barrier()
if myid == k:
print 'MyID : ', k
print ch, nrows, row_starts, col_starts
print 'NNZ', np.sum(data != 0.0)
MPI.COMM_WORLD.Barrier()
raise ValueError("partitioning of input matrix is not correct")
if verbose: verbose_message(m, n, nrows, i, j, data, row_starts, col_starts)
#
# it seems row_starts and col_starts are both to determin
# which part is treated diagnal element.
#
if (m == n and row_starts[0] == col_starts[0] and
row_starts[1] == col_starts[1]):
# this will cause hypre_CSRMatrixReorder call.
M = mfem.HypreParMatrix(MPI.COMM_WORLD,
nrows,
m, n, [i, j,
data, col_starts])
M.CopyRowStarts()
def main(env, savename, replay, macro_duration, num_subs, num_rollouts, warmup_time, train_time, force_subpolicy, store):
if MPI.COMM_WORLD.Get_rank() == 0 and osp.exists(LOGDIR):
shutil.rmtree(LOGDIR)
MPI.COMM_WORLD.Barrier()
# with logger.session(dir=LOGDIR):
train(env, savename, replay, macro_duration, num_subs, num_rollouts, warmup_time, train_time, force_subpolicy, store)
def main(env, savename, save_dir, replay, macro_duration, num_subs, num_rollouts, warmup_time, train_time, force_subpolicy, store):
if MPI.COMM_WORLD.Get_rank() == 0 and osp.exists(LOGDIR):
shutil.rmtree(LOGDIR)
MPI.COMM_WORLD.Barrier()
# with logger.session(dir=LOGDIR):
#train(env, savename, replay, macro_duration, num_subs, num_rollouts, warmup_time, train_time, force_subpolicy, store)
train(env, savename, save_dir, replay, macro_duration, num_subs, num_rollouts, warmup_time, train_time, force_subpolicy, store)
if __name__ == '__main__':
else:
raise ValueError("Unrecognized element: " + elem)
rank = MPI.COMM_WORLD.Get_rank()
nsize = MPI.COMM_WORLD.Get_size()
print "Process %d of %d: element is %s" % (rank, nsize, elem)
if rank == RANK_COORD:
proc_coord(fpath_stndb, elem, nsize - N_NON_WRKRS)
elif rank == RANK_WRITE:
proc_write(fpath_stndb, elem, fpath_out, nsize - N_NON_WRKRS)
else:
proc_work(fpath_stndb, elem, rank)
MPI.COMM_WORLD.Barrier()
# ds = Dataset('/projects/daymet2/station_data/infill/xval_impute_norm.nc')
# params[P_INCLUDE_STNIDS] = np.array(ds.variables['stn_id'][:],dtype="
# parser = argparse.ArgumentParser()
# parser.add_argument('--optimize', type=bool)
# args = parser.parse_args()
#
# env = 'GazeboModularScara4DOF-v3'
# if 'optimize' == True:
# main(job_id, env, savename, replay, params['macro_duration'], params['num_subs'], params['num_rollouts'], params['warmup_time'], params['train_time'], force_subpolicy, store)
# else:
# #Parameters set by user
# job_id = None
if MPI.COMM_WORLD.Get_rank() == 0 and osp.exists(LOGDIR):
shutil.rmtree(LOGDIR)
MPI.COMM_WORLD.Barrier()
# with logger.session(dir=LOGDIR):
load()
def __init__(self, problem, run, evaluator, **kwargs):
self.rank = MPI.COMM_WORLD.Get_rank()
if self.rank == 0:
super().__init__(problem, run, evaluator, cache_key=key, **kwargs)
MPI.COMM_WORLD.Barrier()
if self.rank != 0:
super().__init__(problem, run, evaluator, cache_key=key, **kwargs)
# set in super : self.problem
# set in super : self.run_func
# set in super : self.evaluator
self.num_episodes = kwargs.get('num_episodes')
if self.num_episodes is None:
self.num_episodes = math.inf
self.reward_rule = util.load_attr_from('deephyper.search.nas.agent.utils.'+kwargs['reward_rule'])
self.space = self.problem.space
logger.debug(f'evaluator: {type(self.evaluator)}')
if rank == RANK_COORD:
params[P_EXCLUDE_STNIDS] = np.array([])
ds = Dataset('/projects/daymet2/station_data/infill/xval_infill_po.nc')
params[P_INCLUDE_STNIDS] = np.array(ds.variables['stn_id'][:],dtype="