Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
roi_feats = self.shared_head(roi_feats)
cls_score, bbox_pred = self.bbox_head(roi_feats)
bboxes, scores = self.bbox_head.get_det_bboxes(
rois,
cls_score,
bbox_pred,
img_shape,
scale_factor,
rescale=False,
cfg=None)
aug_bboxes.append(bboxes)
aug_scores.append(scores)
# after merging, bboxes will be rescaled to the original image size
merged_bboxes, merged_scores = merge_aug_bboxes(
aug_bboxes, aug_scores, img_metas, rcnn_test_cfg)
det_bboxes, det_labels = multiclass_nms(
merged_bboxes, merged_scores, rcnn_test_cfg.score_thr,
rcnn_test_cfg.nms, rcnn_test_cfg.max_per_img)
return det_bboxes, det_labels
proposals = delta2bbox(anchors, bbox_pred, self.target_means,
self.target_stds, img_shape)
if cfg.nms_pre > 0 and scores.shape[0] > cfg.nms_pre:
maxscores, _ = scores.max(dim=1)
_, topk_inds = maxscores.topk(cfg.nms_pre)
proposals = proposals[topk_inds, :]
scores = scores[topk_inds, :]
mlvl_proposals.append(proposals)
mlvl_scores.append(scores)
mlvl_proposals = torch.cat(mlvl_proposals)
if rescale:
mlvl_proposals /= scale_factor
mlvl_scores = torch.cat(mlvl_scores)
padding = mlvl_scores.new_zeros(mlvl_scores.shape[0], 1)
mlvl_scores = torch.cat([padding, mlvl_scores], dim=1)
det_bboxes, det_labels = multiclass_nms(mlvl_proposals, mlvl_scores,
cfg.score_thr, cfg.nms,
cfg.max_per_img)
return det_bboxes, det_labels
if use_sigmoid_cls:
max_scores, _ = cls_scores.max(dim=1)
else:
max_scores, _ = cls_scores[:, 1:].max(dim=1)
_, topk_inds = max_scores.topk(nms_pre)
priors = priors[topk_inds, :]
bbox_preds = bbox_preds[topk_inds, :]
cls_scores = cls_scores[topk_inds, :]
mlvl_bboxes = delta2bbox(priors, bbox_preds, target_means,
target_stds, img_shape)
if rescale:
mlvl_bboxes /= mlvl_bboxes.new_tensor(scale_factor)
if use_sigmoid_cls:
padding = cls_scores.new_zeros(cls_scores.shape[0], 1)
cls_scores = torch.cat([padding, cls_scores], dim=1)
det_bboxes, det_labels = multiclass_nms(
mlvl_bboxes, cls_scores, cfg.score_thr, cfg.nms, cfg.max_per_img)
return det_bboxes, det_labels
anchors = anchors[topk_inds, :]
bbox_pred = bbox_pred[topk_inds, :]
scores = scores[topk_inds, :]
bboxes = delta2bbox(anchors, bbox_pred, self.target_means,
self.target_stds, img_shape)
mlvl_bboxes.append(bboxes)
mlvl_scores.append(scores)
mlvl_bboxes = torch.cat(mlvl_bboxes)
if rescale:
mlvl_bboxes /= mlvl_bboxes.new_tensor(scale_factor)
mlvl_scores = torch.cat(mlvl_scores)
if self.use_sigmoid_cls:
# Add a dummy background class to the front when using sigmoid
padding = mlvl_scores.new_zeros(mlvl_scores.shape[0], 1)
mlvl_scores = torch.cat([padding, mlvl_scores], dim=1)
det_bboxes, det_labels = multiclass_nms(mlvl_bboxes, mlvl_scores,
cfg.score_thr, cfg.nms,
cfg.max_per_img)
return det_bboxes, det_labels
points = points[topk_inds, :]
bbox_pred = bbox_pred[topk_inds, :]
scores = scores[topk_inds, :]
centerness = centerness[topk_inds]
bboxes = distance2bbox(points, bbox_pred, max_shape=img_shape)
mlvl_bboxes.append(bboxes)
mlvl_scores.append(scores)
mlvl_centerness.append(centerness)
mlvl_bboxes = torch.cat(mlvl_bboxes)
if rescale:
mlvl_bboxes /= mlvl_bboxes.new_tensor(scale_factor)
mlvl_scores = torch.cat(mlvl_scores)
padding = mlvl_scores.new_zeros(mlvl_scores.shape[0], 1)
mlvl_scores = torch.cat([padding, mlvl_scores], dim=1)
mlvl_centerness = torch.cat(mlvl_centerness)
det_bboxes, det_labels = multiclass_nms(
mlvl_bboxes,
mlvl_scores,
cfg.score_thr,
cfg.nms,
cfg.max_per_img,
score_factors=mlvl_centerness)
return det_bboxes, det_labels
if bbox_pred is not None:
bboxes = delta2bbox(rois[:, 1:], bbox_pred, self.target_means,
self.target_stds, img_shape)
else:
bboxes = rois[:, 1:].clone()
if img_shape is not None:
bboxes[:, [0, 2]].clamp_(min=0, max=img_shape[1] - 1)
bboxes[:, [1, 3]].clamp_(min=0, max=img_shape[0] - 1)
if rescale:
bboxes /= scale_factor
if cfg is None:
return bboxes, scores
else:
det_bboxes, det_labels = multiclass_nms(bboxes, scores,
cfg.score_thr, cfg.nms,
cfg.max_per_img)
return det_bboxes, det_labels
cls_score = sum(ms_scores) / float(len(ms_scores))
bboxes, scores = self.bbox_head[-1].get_det_bboxes(
rois,
cls_score,
bbox_pred,
img_shape,
scale_factor,
rescale=False,
cfg=None)
aug_bboxes.append(bboxes)
aug_scores.append(scores)
# after merging, bboxes will be rescaled to the original image size
merged_bboxes, merged_scores = merge_aug_bboxes(
aug_bboxes, aug_scores, img_metas, rcnn_test_cfg)
det_bboxes, det_labels = multiclass_nms(merged_bboxes, merged_scores,
rcnn_test_cfg.score_thr,
rcnn_test_cfg.nms,
rcnn_test_cfg.max_per_img)
bbox_result = bbox2result(det_bboxes, det_labels,
self.bbox_head[-1].num_classes)
if self.with_mask:
if det_bboxes.shape[0] == 0:
segm_result = [[]
for _ in range(self.mask_head[-1].num_classes -
1)]
else:
aug_masks = []
aug_img_metas = []
for x, img_meta in zip(self.extract_feats(imgs), img_metas):
x1 = bboxes[:, 0].clamp(min=0, max=img_shape[1])
y1 = bboxes[:, 1].clamp(min=0, max=img_shape[0])
x2 = bboxes[:, 2].clamp(min=0, max=img_shape[1])
y2 = bboxes[:, 3].clamp(min=0, max=img_shape[0])
bboxes = torch.stack([x1, y1, x2, y2], dim=-1)
mlvl_bboxes.append(bboxes)
mlvl_scores.append(scores)
mlvl_bboxes = torch.cat(mlvl_bboxes)
if rescale:
mlvl_bboxes /= mlvl_bboxes.new_tensor(scale_factor)
mlvl_scores = torch.cat(mlvl_scores)
if self.use_sigmoid_cls:
padding = mlvl_scores.new_zeros(mlvl_scores.shape[0], 1)
mlvl_scores = torch.cat([padding, mlvl_scores], dim=1)
if nms:
det_bboxes, det_labels = multiclass_nms(mlvl_bboxes, mlvl_scores,
cfg.score_thr, cfg.nms,
cfg.max_per_img)
return det_bboxes, det_labels
else:
return mlvl_bboxes, mlvl_scores
x1 = bboxes[:, 0].clamp(min=0, max=img_shape[1])
y1 = bboxes[:, 1].clamp(min=0, max=img_shape[0])
x2 = bboxes[:, 2].clamp(min=0, max=img_shape[1])
y2 = bboxes[:, 3].clamp(min=0, max=img_shape[0])
bboxes = torch.stack([x1, y1, x2, y2], dim=-1)
mlvl_bboxes.append(bboxes)
mlvl_scores.append(scores)
mlvl_bboxes = torch.cat(mlvl_bboxes)
if rescale:
mlvl_bboxes /= mlvl_bboxes.new_tensor(scale_factor)
mlvl_scores = torch.cat(mlvl_scores)
if self.use_sigmoid_cls:
padding = mlvl_scores.new_zeros(mlvl_scores.shape[0], 1)
mlvl_scores = torch.cat([padding, mlvl_scores], dim=1)
if nms:
det_bboxes, det_labels = multiclass_nms(mlvl_bboxes, mlvl_scores,
cfg.score_thr, cfg.nms,
cfg.max_per_img)
return det_bboxes, det_labels
else:
return mlvl_bboxes, mlvl_scores