Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
x,
img_meta,
det_bboxes,
det_labels,
rescale=False):
# image shape of the first image in the batch (only one)
ori_shape = img_meta[0]['ori_shape']
scale_factor = img_meta[0]['scale_factor']
if det_bboxes.shape[0] == 0:
segm_result = [[] for _ in range(self.mask_head.num_classes - 1)]
else:
# if det_bboxes is rescaled to the original image size, we need to
# rescale it back to the testing scale to obtain RoIs.
_bboxes = (
det_bboxes[:, :4] * scale_factor if rescale else det_bboxes)
mask_rois = bbox2roi([_bboxes])
mask_feats = self.mask_roi_extractor(
x[:len(self.mask_roi_extractor.featmap_strides)], mask_rois)
if self.with_shared_head:
mask_feats = self.shared_head(mask_feats)
mask_pred = self.mask_head(mask_feats)
segm_result = self.mask_head.get_seg_masks(
mask_pred, _bboxes, det_labels, self.test_cfg.rcnn, ori_shape,
scale_factor, rescale)
return segm_result
def aug_test_bboxes(self, feats, img_metas, proposal_list, rcnn_test_cfg):
aug_bboxes = []
aug_scores = []
for x, img_meta in zip(feats, img_metas):
# only one image in the batch
img_shape = img_meta[0]['img_shape']
scale_factor = img_meta[0]['scale_factor']
flip = img_meta[0]['flip']
# TODO more flexible
proposals = bbox_mapping(proposal_list[0][:, :4], img_shape,
scale_factor, flip)
rois = bbox2roi([proposals])
# recompute feature maps to save GPU memory
roi_feats = self.bbox_roi_extractor(
x[:len(self.bbox_roi_extractor.featmap_strides)], rois)
if self.with_shared_head:
roi_feats = self.shared_head(roi_feats)
cls_score, bbox_pred = self.bbox_head(roi_feats)
bboxes, scores = self.bbox_head.get_det_bboxes(
rois,
cls_score,
bbox_pred,
img_shape,
scale_factor,
rescale=False,
cfg=None)
aug_bboxes.append(bboxes)
aug_scores.append(scores)
for i in range(num_imgs):
assign_result = bbox_assigner.assign(proposal_list[i],
gt_bboxes[i],
gt_bboxes_ignore[i],
gt_labels[i])
sampling_result = bbox_sampler.sample(
assign_result,
proposal_list[i],
gt_bboxes[i],
gt_labels[i],
feats=[lvl_feat[i][None] for lvl_feat in x])
sampling_results.append(sampling_result)
# bbox head forward and loss
if self.with_bbox:
rois = bbox2roi([res.bboxes for res in sampling_results])
# TODO: a more flexible way to decide which feature maps to use
bbox_cls_feats = self.bbox_roi_extractor(
x[:self.bbox_roi_extractor.num_inputs], rois)
bbox_reg_feats = self.bbox_roi_extractor(
x[:self.bbox_roi_extractor.num_inputs],
rois,
roi_scale_factor=self.reg_roi_scale_factor)
if self.with_shared_head:
bbox_cls_feats = self.shared_head(bbox_cls_feats)
bbox_reg_feats = self.shared_head(bbox_reg_feats)
cls_score, bbox_pred = self.bbox_head(bbox_cls_feats,
bbox_reg_feats)
bbox_targets = self.bbox_head.get_target(sampling_results,
gt_bboxes, gt_labels,
self.train_cfg.rcnn)
def simple_test_bboxes(self,
x,
img_meta,
proposals,
rcnn_test_cfg,
rescale=False):
"""Test only det bboxes without augmentation."""
rois = bbox2roi(proposals)
bbox_cls_feats = self.bbox_roi_extractor(
x[:self.bbox_roi_extractor.num_inputs], rois)
bbox_reg_feats = self.bbox_roi_extractor(
x[:self.bbox_roi_extractor.num_inputs],
rois,
roi_scale_factor=self.reg_roi_scale_factor)
if self.with_shared_head:
bbox_cls_feats = self.shared_head(bbox_cls_feats)
bbox_reg_feats = self.shared_head(bbox_reg_feats)
cls_score, bbox_pred = self.bbox_head(bbox_cls_feats, bbox_reg_feats)
img_shape = img_meta[0]['img_shape']
scale_factor = img_meta[0]['scale_factor']
det_bboxes, det_labels = self.bbox_head.get_det_bboxes(
rois,
cls_score,
bbox_pred,
proposal_list = self.simple_test_rpn(
x, img_metas,
self.test_cfg.rpn) if proposals is None else proposals
img_shape = img_metas[0]['img_shape']
ori_shape = img_metas[0]['ori_shape']
scale_factor = img_metas[0]['scale_factor']
# "ms" in variable names means multi-stage
ms_bbox_result = {}
ms_segm_result = {}
ms_scores = []
rcnn_test_cfg = self.test_cfg.rcnn
rois = bbox2roi(proposal_list)
for i in range(self.num_stages):
bbox_roi_extractor = self.bbox_roi_extractor[i]
bbox_head = self.bbox_head[i]
bbox_feats = bbox_roi_extractor(
x[:len(bbox_roi_extractor.featmap_strides)], rois)
if self.with_shared_head:
bbox_feats = self.shared_head(bbox_feats)
cls_score, bbox_pred = bbox_head(bbox_feats)
ms_scores.append(cls_score)
if i < self.num_stages - 1:
bbox_label = cls_score.argmax(dim=1)
rois = bbox_head.regress_by_class(rois, bbox_label, bbox_pred,
img_metas[0])
det_bboxes,
det_labels,
rescale=False):
# image shape of the first image in the batch (only one)
ori_shape = img_meta[0]['ori_shape']
scale_factor = img_meta[0]['scale_factor']
if det_bboxes.shape[0] == 0:
segm_result = [[] for _ in range(self.mask_head.num_classes - 1)]
mask_scores = [[] for _ in range(self.mask_head.num_classes - 1)]
else:
# if det_bboxes is rescaled to the original image size, we need to
# rescale it back to the testing scale to obtain RoIs.
_bboxes = (
det_bboxes[:, :4] * scale_factor if rescale else det_bboxes)
mask_rois = bbox2roi([_bboxes])
mask_feats = self.mask_roi_extractor(
x[:len(self.mask_roi_extractor.featmap_strides)], mask_rois)
if self.with_shared_head:
mask_feats = self.shared_head(mask_feats)
mask_pred = self.mask_head(mask_feats)
segm_result = self.mask_head.get_seg_masks(mask_pred, _bboxes,
det_labels,
self.test_cfg.rcnn,
ori_shape, scale_factor,
rescale)
# get mask scores with mask iou head
mask_iou_pred = self.mask_iou_head(
mask_feats, mask_pred[range(det_labels.size(0)),
det_labels + 1])
mask_scores = self.mask_iou_head.get_mask_scores(
mask_iou_pred, det_bboxes, det_labels)
sampling_results = []
for i in range(num_imgs):
assign_result = bbox_assigner.assign(proposal_list[i],
gt_bboxes[i],
gt_bboxes_ignore[i],
gt_labels[i])
sampling_result = bbox_sampler.sample(
assign_result,
proposal_list[i],
gt_bboxes[i],
gt_labels[i],
feats=[lvl_feat[i][None] for lvl_feat in x])
sampling_results.append(sampling_result)
# bbox head forward and loss
rois = bbox2roi([res.bboxes for res in sampling_results])
# TODO: a more flexible way to decide which feature maps to use
bbox_feats = self.bbox_roi_extractor(
x[:self.bbox_roi_extractor.num_inputs], rois)
if self.with_shared_head:
bbox_feats = self.shared_head(bbox_feats)
cls_score, bbox_pred = self.bbox_head(bbox_feats)
bbox_targets = self.bbox_head.get_target(sampling_results,
gt_bboxes, gt_labels,
self.train_cfg.rcnn)
loss_bbox = self.bbox_head.loss(cls_score, bbox_pred,
*bbox_targets)
losses.update(loss_bbox)
# Grid head forward and loss
sampling_results = self._random_jitter(sampling_results, img_metas)
bbox_feats = self.bbox_roi_extractor(
x[:self.bbox_roi_extractor.num_inputs], rois)
if self.with_shared_head:
bbox_feats = self.shared_head(bbox_feats)
cls_score, bbox_pred = self.bbox_head(bbox_feats)
bbox_targets = self.bbox_head.get_target(sampling_results,
gt_bboxes, gt_labels,
self.train_cfg.rcnn)
loss_bbox = self.bbox_head.loss(cls_score, bbox_pred,
*bbox_targets)
losses.update(loss_bbox)
# Grid head forward and loss
sampling_results = self._random_jitter(sampling_results, img_metas)
pos_rois = bbox2roi([res.pos_bboxes for res in sampling_results])
grid_feats = self.grid_roi_extractor(
x[:self.grid_roi_extractor.num_inputs], pos_rois)
if self.with_shared_head:
grid_feats = self.shared_head(grid_feats)
# Accelerate training
max_sample_num_grid = self.train_cfg.rcnn.get('max_num_grid', 192)
sample_idx = torch.randperm(
grid_feats.shape[0])[:min(grid_feats.
shape[0], max_sample_num_grid)]
grid_feats = grid_feats[sample_idx]
grid_pred = self.grid_head(grid_feats)
grid_targets = self.grid_head.get_target(sampling_results,
self.train_cfg.rcnn)
grid_targets = grid_targets[sample_idx]
x[:self.bbox_roi_extractor.num_inputs], rois)
if self.with_shared_head:
bbox_feats = self.shared_head(bbox_feats)
cls_score, bbox_pred = self.bbox_head(bbox_feats)
bbox_targets = self.bbox_head.get_target(sampling_results,
gt_bboxes, gt_labels,
self.train_cfg.rcnn)
loss_bbox = self.bbox_head.loss(cls_score, bbox_pred,
*bbox_targets)
losses.update(loss_bbox)
# mask head forward and loss
if self.with_mask:
if not self.share_roi_extractor:
pos_rois = bbox2roi(
[res.pos_bboxes for res in sampling_results])
mask_feats = self.mask_roi_extractor(
x[:self.mask_roi_extractor.num_inputs], pos_rois)
if self.with_shared_head:
mask_feats = self.shared_head(mask_feats)
else:
pos_inds = []
device = bbox_feats.device
for res in sampling_results:
pos_inds.append(
torch.ones(
res.pos_bboxes.shape[0],
device=device,
dtype=torch.uint8))
pos_inds.append(
torch.zeros(
rcnn_test_cfg = self.test_cfg.rcnn
aug_bboxes = []
aug_scores = []
for x, img_meta in zip(self.extract_feats(imgs), img_metas):
# only one image in the batch
img_shape = img_meta[0]['img_shape']
scale_factor = img_meta[0]['scale_factor']
flip = img_meta[0]['flip']
proposals = bbox_mapping(proposal_list[0][:, :4], img_shape,
scale_factor, flip)
# "ms" in variable names means multi-stage
ms_scores = []
rois = bbox2roi([proposals])
for i in range(self.num_stages):
bbox_roi_extractor = self.bbox_roi_extractor[i]
bbox_head = self.bbox_head[i]
bbox_feats = bbox_roi_extractor(
x[:len(bbox_roi_extractor.featmap_strides)], rois)
if self.with_shared_head:
bbox_feats = self.shared_head(bbox_feats)
cls_score, bbox_pred = bbox_head(bbox_feats)
ms_scores.append(cls_score)
if i < self.num_stages - 1:
bbox_label = cls_score.argmax(dim=1)
rois = bbox_head.regress_by_class(rois, bbox_label,
bbox_pred, img_meta[0])