How to use the megnet.utils.preprocessing.DummyScaler function in megnet

To help you get started, we’ve selected a few megnet examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github materialsvirtuallab / megnet / megnet / models.py View on Github external
nvocal: int = 95,
                 embedding_dim: int = 16,
                 nbvocal: int = None,
                 bond_embedding_dim: int = None,
                 ngvocal: int = None,
                 global_embedding_dim: int = None,
                 npass: int = 3,
                 ntarget: int = 1,
                 act: Callable = softplus2,
                 is_classification: bool = False,
                 loss: str = "mse",
                 metrics: List[str] = None,
                 l2_coef: float = None,
                 dropout: float = None,
                 graph_converter: StructureGraph = None,
                 target_scaler: Scaler = DummyScaler(),
                 optimizer_kwargs: Dict = None,
                 dropout_on_predict: bool = False
                 ):
        """
        Args:
            nfeat_edge: (int) number of bond features
            nfeat_global: (int) number of state features
            nfeat_node: (int) number of atom features
            nblocks: (int) number of MEGNetLayer blocks
            lr: (float) learning rate
            n1: (int) number of hidden units in layer 1 in MEGNetLayer
            n2: (int) number of hidden units in layer 2 in MEGNetLayer
            n3: (int) number of hidden units in layer 3 in MEGNetLayer
            nvocal: (int) number of total element
            embedding_dim: (int) number of embedding dimension
            nbvocal: (int) number of bond types if bond attributes are types
github materialsvirtuallab / megnet / megnet / models.py View on Github external
nvocal: int = 95,
                 embedding_dim: int = 16,
                 nbvocal: int = None,
                 bond_embedding_dim: int = None,
                 ngvocal: int = None,
                 global_embedding_dim: int = None,
                 npass: int = 3,
                 ntarget: int = 1,
                 act: Callable = softplus2,
                 is_classification: bool = False,
                 loss: str = "mse",
                 metrics: List[str] = None,
                 l2_coef: float = None,
                 dropout: float = None,
                 graph_converter: StructureGraph = None,
                 target_scaler: Scaler = DummyScaler(),
                 optimizer_kwargs: Dict = None,
                 dropout_on_predict: bool = False
                 ):
        """
        Args:
            nfeat_edge: (int) number of bond features
            nfeat_global: (int) number of state features
            nfeat_node: (int) number of atom features
            nblocks: (int) number of MEGNetLayer blocks
            lr: (float) learning rate
            n1: (int) number of hidden units in layer 1 in MEGNetLayer
            n2: (int) number of hidden units in layer 2 in MEGNetLayer
            n3: (int) number of hidden units in layer 3 in MEGNetLayer
            nvocal: (int) number of total element
            embedding_dim: (int) number of embedding dimension
            nbvocal: (int) number of bond types if bond attributes are types
github materialsvirtuallab / megnet / megnet / models.py View on Github external
def __init__(self,
                 model: Model,
                 graph_converter: StructureGraph,
                 target_scaler: Scaler = DummyScaler(),
                 metadata: Dict = None,
                 **kwargs):
        """
        Args:
            model: (keras model)
            graph_converter: (object) a object that turns a structure to a graph,
                check `megnet.data.crystal`
            target_scaler: (object) a scaler object for converting targets, check
                `megnet.utils.preprocessing`
            metadata: (dict) An optional dict of metadata associated with the model.
                Recommended to incorporate some basic information such as units,
                MAE performance, etc.
        """
        self.model = model
        self.graph_converter = graph_converter
        self.target_scaler = target_scaler
github materialsvirtuallab / megnet / megnet / callbacks.py View on Github external
super().__init__()
        if val_gen is None:
            raise ValueError('No validation data is provided!')
        self.verbose = verbose
        if self.verbose > 0:
            logging.basicConfig(level=logging.INFO)
        self.filepath = filepath
        self.save_best_only = save_best_only
        self.save_weights_only = save_weights_only
        self.period = period
        self.epochs_since_last_save = 0
        self.val_gen = val_gen
        self.steps_per_val = steps_per_val
        self.target_scaler = target_scaler
        if self.target_scaler is None:
            self.target_scaler = DummyScaler()

        if monitor == 'val_mae':
            self.metric = mae
            self.monitor = 'val_mae'
        elif monitor == 'val_acc':
            self.metric = accuracy
            self.filepath = self.filepath.replace('val_mae', 'val_acc')
            self.monitor = 'val_acc'

        if mode == 'min':
            self.monitor_op = np.less
            self.best = np.Inf
        elif mode == 'max':
            self.monitor_op = np.greater
            self.best = -np.Inf
        else:
github materialsvirtuallab / megnet / megnet / callbacks.py View on Github external
val_units: List[str] = None,
                 is_pa: bool = False):
        super().__init__()
        self.train_gen = train_gen
        self.val_gen = val_gen
        self.steps_per_train = steps_per_train
        self.steps_per_val = steps_per_val
        self.yscaler = y_scaler
        self.epochs = []
        self.total_epoch = 0
        self.n_every = n_every
        self.val_names = val_names
        self.val_units = val_units
        self.is_pa = is_pa
        if self.yscaler is None:
            self.yscaler = DummyScaler()
github materialsvirtuallab / megnet / megnet / models.py View on Github external
def __init__(self,
                 model: Model,
                 graph_converter: StructureGraph,
                 target_scaler: Scaler = DummyScaler(),
                 metadata: Dict = None,
                 **kwargs):
        """
        Args:
            model: (keras model)
            graph_converter: (object) a object that turns a structure to a graph,
                check `megnet.data.crystal`
            target_scaler: (object) a scaler object for converting targets, check
                `megnet.utils.preprocessing`
            metadata: (dict) An optional dict of metadata associated with the model.
                Recommended to incorporate some basic information such as units,
                MAE performance, etc.
        """
        self.model = model
        self.graph_converter = graph_converter
        self.target_scaler = target_scaler