Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
val_nb_atoms = [len(i['atom']) for i in validation_graphs]
validation_targets = [self.target_scaler.transform(i, j) for i, j in zip(validation_targets, val_nb_atoms)]
val_inputs = self.graph_converter.get_flat_data(validation_graphs, validation_targets)
val_generator = self._create_generator(*val_inputs,
batch_size=batch_size)
steps_per_val = int(np.ceil(len(validation_graphs) / batch_size))
if automatic_correction:
callbacks.extend([ReduceLRUponNan(filepath=filepath,
monitor=monitor,
mode=mode,
factor=lr_scaling_factor,
patience=patience,
)])
if save_checkpoint:
callbacks.extend([ModelCheckpointMAE(filepath=filepath,
monitor=monitor,
mode=mode,
save_best_only=True,
save_weights_only=False,
val_gen=val_generator,
steps_per_val=steps_per_val,
target_scaler=self.target_scaler)])
else:
val_generator = None
steps_per_val = None
train_inputs = self.graph_converter.get_flat_data(train_graphs, train_targets)
# check dimension match
self.check_dimension(train_graphs[0])
train_generator = self._create_generator(*train_inputs, batch_size=batch_size)
steps_per_train = int(np.ceil(len(train_graphs) / batch_size))
self.fit_generator(train_generator, steps_per_epoch=steps_per_train,
val_nb_atoms = [len(i['atom']) for i in validation_graphs]
validation_targets = [self.target_scaler.transform(i, j) for i, j in zip(validation_targets, val_nb_atoms)]
val_inputs = self.graph_converter.get_flat_data(validation_graphs, validation_targets)
val_generator = self._create_generator(*val_inputs,
batch_size=batch_size)
steps_per_val = int(np.ceil(len(validation_graphs) / batch_size))
if automatic_correction:
callbacks.extend([ReduceLRUponNan(filepath=filepath,
monitor=monitor,
mode=mode,
factor=lr_scaling_factor,
patience=patience,
)])
if save_checkpoint:
callbacks.extend([ModelCheckpointMAE(filepath=filepath,
monitor=monitor,
mode=mode,
save_best_only=True,
save_weights_only=False,
val_gen=val_generator,
steps_per_val=steps_per_val,
target_scaler=self.target_scaler)])
else:
val_generator = None
steps_per_val = None
train_inputs = self.graph_converter.get_flat_data(train_graphs, train_targets)
# check dimension match
self.check_dimension(train_graphs[0])
train_generator = self._create_generator(*train_inputs, batch_size=batch_size)
steps_per_train = int(np.ceil(len(train_graphs) / batch_size))
self.fit_generator(train_generator, steps_per_epoch=steps_per_train,