Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def test_timeavg_binstep(binstep):
maxbins = len(data) // 2
rms, rmslo, rmshi, stderr, binsz = ms.time_avg(data, maxbins, binstep)
assert len(rms) == len(data) // binstep // 2
def test_rms():
data = np.random.normal(0, 1.0, nsamples)
rms, lo, hi, stderr, binsz = ms.time_avg(data)
ax = mp.rms(binsz, rms, stderr, lo, hi)
def test_timeavg_values_red():
rms, rmslo, rmshi, stderr, binsz = ms.time_avg(data, len(data)/10, 5)
np.testing.assert_almost_equal(rms, expected_red_rms)
np.testing.assert_almost_equal(rmslo, expected_red_rmslo)
np.testing.assert_almost_equal(rmshi, expected_red_rmshi)
np.testing.assert_almost_equal(stderr, expected_red_stderr)
np.testing.assert_almost_equal(binsz, expected_binsz)
def test_timeavg_values_white():
rms, rmslo, rmshi, stderr, binsz = ms.time_avg(white, len(data)/10, 5)
np.testing.assert_almost_equal(rms, expected_white_rms)
np.testing.assert_almost_equal(rmslo, expected_white_rmslo)
np.testing.assert_almost_equal(rmshi, expected_white_rmshi)
np.testing.assert_almost_equal(stderr, expected_white_stderr)
np.testing.assert_almost_equal(binsz, expected_binsz)
def test_timeavg_maxbins(maxbins):
rms, rmslo, rmshi, stderr, binsz = ms.time_avg(data, maxbins)
assert True
def test_timeavg_defaults():
rms, rmslo, rmshi, stderr, binsz = ms.time_avg(data)
assert len(rms) == 500
assert len(rmslo) == 500
assert len(rmshi) == 500
assert len(stderr) == 500
assert len(binsz) == 500
def test_timeavg_data_type(dtype):
rms, rmslo, rmshi, stderr, binsz = ms.time_avg(dtype(data))
assert True
mp.trace(output['posterior'], zchain=output['zchain'],
burnin=output['burnin'], pnames=texnames[ifree],
savefile=fname+"_trace.png")
log.msg("'{:s}'".format(fname+"_trace.png"), indent=2)
# Pairwise posteriors:
mp.pairwise(posterior, pnames=texnames[ifree], bestp=best_freepars,
savefile=fname+"_pairwise.png")
log.msg("'{:s}'".format(fname+"_pairwise.png"), indent=2)
# Histograms:
mp.histogram(posterior, pnames=texnames[ifree], bestp=best_freepars,
savefile=fname+"_posterior.png",
quantile=0.683, pdf=pdf, xpdf=xpdf)
log.msg("'{:s}'".format(fname+"_posterior.png"), indent=2)
# RMS vs bin size:
if rms:
RMS, RMSlo, RMShi, stderr, bs = ms.time_avg(output['best_model']-data)
mp.rms(bs, RMS, stderr, RMSlo, RMShi, binstep=len(bs)//500+1,
savefile=fname+"_RMS.png")
log.msg("'{:s}'".format(fname+"_RMS.png"), indent=2)
# Sort of guessing that indparams[0] is the X array for data as in y=y(x):
if (indparams != []
and isinstance(indparams[0], (list, tuple, np.ndarray))
and np.size(indparams[0]) == ndata):
try:
mp.modelfit(data, uncert, indparams[0], output['best_model'],
savefile=fname+"_model.png")
log.msg("'{:s}'".format(fname+"_model.png"), indent=2)
except:
pass
# Close the log file if necessary:
if closelog: