Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def run_mlab_examples():
from mayavi import mlab
from mayavi.tools.animator import Animator
############################################################
# run all the "test_foobar" functions in the mlab module.
for name, func in getmembers(mlab):
if not callable(func) or not name[:4] in ('test', 'Test'):
continue
if sys.platform == 'win32' and name == 'test_mesh_mask_custom_colors':
# fixme: This test does not seem to work on win32, disabling for now.
continue
mlab.clf()
GUI.process_events()
obj = func()
if isinstance(obj, Animator):
obj.delay = 10
# Close the animation window.
obj.close()
while is_timer_running(obj.timer):
GUI.process_events()
sleep(0.05)
# Mayavi has become too fast: the operator cannot see if the
# Test function was succesful.
GUI.process_events()
sleep(0.1)
coms_np = np.array(coms)
xs = np.minimum(np.maximum(mapRez[0]+((coms_np[:,2]+500)/3000.*mapRez[0]).astype(np.int), 0),mapRez[0]-1)
ys = np.minimum(np.maximum(((coms_np[:,0]+500)/1500.*mapRez[0]).astype(np.int), 0), mapRez[1]-1)
mapIm[xs, ys] = 255
vv.imshow("Map", mapIm)
# scatter(coms_np[:,0], -coms_np[:,2])
'''3D Vis'''
if 0:
# figure = mlab.figure(1, fgcolor=(1,1,1), bgcolor=(0,0,0))
# from pyKinectTools.utils.DepthUtils import *
pts = depthIm2XYZ(depthIm).astype(np.int)
interval = 25
figure.scene.disable_render = True
mlab.clf()
# ss = mlab.points3d(-pts[::interval,0], pts[::interval,1], pts[::interval,2], colormap='Blues', vmin=1000., vmax=5000., mode='2dvertex')
ss = mlab.points3d(pts[::interval,0], pts[::interval,1], pts[::interval,2], 5.-(np.minimum(pts[::interval,2], 5000)/float((-pts[:,2]).max()))/1000., scale_factor=25., colormap='Blues')#, mode='2dvertex')
# , scale_factor=25.
mlab.view(azimuth=0, elevation=0, distance=3000., focalpoint=(0,0,0), figure=figure)#, reset_roll=False)
# mlab.roll(90)
currentView = mlab.view()
figure.scene.disable_render = False
mlab.draw()
# mlab.show()
# ss = mlab.points3d(pts[::interval,0], pts[::interval,1], pts[::interval,2], color=col, scale_factor=5)
# ss = mlab.points3d(pts[:,0], pts[:,1], pts[:,2], color=(1,1,1), scale_factor=5)
# ss = mlab.points3d(pts[:,0], pts[:,1], pts[:,2])
''' Playback control: Look at keyboard input '''
def capture_image(func, filename):
""" Runs a function doing some mayavi drawing and save the resulting
scene to a file.
"""
mlab.clf()
func()
if not filename[-4:] in ('.jpg', '.png'):
filename = '%s.jpg' % filename
mlab.savefig(filename , size=(400, 400) )
os.system('convert %s -trim %s' % (filename, filename))
points = np.copy(all_points[:, 20])
points[0] = low
points[1] = high
s = np.arange(points.shape[0])
good = ~np.isnan(points[:, 0])
fig = mlab.figure(bgcolor=(1,1,1), size=(500,500))
fig.scene.anti_aliasing_frames = 2
low, high = np.percentile(points[good, 0], [10,90])
scale_factor = (high - low) / 10.0
mlab.clf()
pts = mlab.points3d(points[:, 0], -points[:, 1], points[:, 2], s,
scale_mode='none', scale_factor=scale_factor)
lines = connect_all(points, scheme, bp_dict, cmap)
mlab.orientation_axes()
view = list(mlab.view())
mlab.view(focalpoint='auto', distance='auto')
for framenum in trange(data.shape[0], ncols=70):
fig.scene.disable_render = True
if framenum in framedict:
points = all_points[:, framenum]
else:
points = np.ones((nparts, 3))*np.nan
T_world_camera = T_camera_world.inverse()
R_stp_obj = self.stable_pose.r
T_obj_stp = stf.SimilarityTransform3D(pose=tfx.pose(R_stp_obj.T, np.zeros(3)), from_frame='stp', to_frame='obj')
t_stp_table = np.array([0, 0, z])
T_stp_table = stf.SimilarityTransform3D(pose=tfx.pose(np.eye(3), t_stp_table), from_frame='table', to_frame='stp')
T_obj_world = T_obj_camera.dot(T_camera_world)
T_gripper_obj = grasp.gripper_transform(gripper=self.gripper)
T_gripper_world = T_gripper_obj.dot(T_obj_world)
# visualize the robot's understanding of the world
logging.info('Displaying robot world state')
mv.clf()
mvis.MayaviVisualizer.plot_table(T_table_world, d=table_extent)
mvis.MayaviVisualizer.plot_pose(T_world, alpha=alpha, tube_radius=tube_radius, center_scale=center_scale)
mvis.MayaviVisualizer.plot_pose(T_obj_world, alpha=alpha, tube_radius=tube_radius, center_scale=center_scale)
mvis.MayaviVisualizer.plot_pose(T_camera_world, alpha=alpha, tube_radius=tube_radius, center_scale=center_scale)
mvis.MayaviVisualizer.plot_mesh(object_mesh, T_obj_world, color=(1,0,0))
mvis.MayaviVisualizer.plot_point_cloud(cb_points_camera, T_world_camera, color=(1,1,0))
mvis.MayaviVisualizer.plot_gripper(grasp, T_obj_world, self.gripper)
delta_view = 360.0 / num_grasp_views
mv.view(distance=cam_dist)
for j in range(num_grasp_views):
az = j * delta_view
mv.view(azimuth=az)
figname = 'estimated_scene_view_%d.png' %(j)
mv.savefig(os.path.join(logging_dir, figname))
def draw(self):
mlab.clf()
self.draw_noupdate()
self.drawDisplacements()
try:
from urllib import urlopen
except ImportError:
from urllib.request import urlopen
print('Downloading data, please wait')
opener = urlopen(
'http://code.enthought.com/projects/mayavi/data/h2o-elf.cube'
)
open('h2o-elf.cube', 'wb').write(opener.read())
# Plot the atoms and the bonds ################################################
import numpy as np
from mayavi import mlab
mlab.figure(1, bgcolor=(0, 0, 0), size=(350, 350))
mlab.clf()
# The position of the atoms
atoms_x = np.array([2.9, 2.9, 3.8]) * 40 / 5.5
atoms_y = np.array([3.0, 3.0, 3.0]) * 40 / 5.5
atoms_z = np.array([3.8, 2.9, 2.7]) * 40 / 5.5
O = mlab.points3d(atoms_x[1:-1], atoms_y[1:-1], atoms_z[1:-1],
scale_factor=3,
resolution=20,
color=(1, 0, 0),
scale_mode='none')
H1 = mlab.points3d(atoms_x[:1], atoms_y[:1], atoms_z[:1],
scale_factor=2,
resolution=20,
color=(1, 1, 1),
def saveVisSnapshotMayavi(data, outfpath=None, fig=None):
import mayavi.mlab
figWasNone = 0
if fig is None:
mayavi.mlab.options.offscreen = True
fig = mayavi.mlab.figure(bgcolor=(1,1,1))
figWasNone = 1
else:
mayavi.mlab.clf(fig)
visualizeDenseMayavi(data, fig)
mayavi.mlab.view(113.21283385785944,142.9695294105835,roll=93.37654235007402)
I = mayavi.mlab.screenshot(fig)
if figWasNone:
mayavi.mlab.close(fig)
if outfpath is not None:
scipy.misc.imsave(outfpath, I)
return I
from CZ_color import CZ_W_2_color
# Stations coordinates
xsta, ysta, zsta = [], [], []
for sta in sorted(stations):
xsta.append(stations[sta]['x'])
ysta.append(stations[sta]['y'])
zsta.append(stations[sta]['elev'])
z_ph = [-elt for elt in z]
# Initial hypocentral parameters
xini, yini, zini, zini_ph, to_ini = coord_cluster(cluster[i], locs)
mlab.figure(i, bgcolor=(1, 1, 1), fgcolor=(0, 0, 0), size=(1000, 900))
mlab.clf()
# yellow : initial locations
mlab.points3d(xini, yini, zini_ph, color=(1, 1, 0), scale_factor=0.2)
mlab.points3d(xsta, ysta, zsta, color=(1, 0, 0), scale_factor=0.05,
mode='cube')
# cyan : new locations
mlab.points3d(x, y, z_ph, color=(0, 1, 1), scale_factor=0.2)
mlab.axes(extent=area, color=(0, 0, 0)) # axe des z positif vers le haut
mlab.outline(extent=area, color=(0, 0, 0))
mlab.title("cluster=%s, threshold=%s, nbmin=%s" % (i, threshold, nbmin),
height=0.1, size=0.35, color=(0, 0, 0))
if len(cluster[i]) < 20:
for ind_I in range(len(cluster[i])):
for ind_J in range(ind_I+1, len(cluster[i])):
ev_I = cluster[i][ind_I]-1
ev_J = cluster[i][ind_J]-1