Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def conv_layer(inputs, kernel_shape, biases_shape,
stride=1, padding='SAME', activation='relu', norm=None,
dropout=False, dropout_rate=None, regularizer=None,
initializer=None,
dimensions=2, is_training=True):
if initializer is not None:
initializer_obj = get_initializer(initializer)
weights = tf.compat.v1.get_variable(
'weights',
initializer=initializer_obj(kernel_shape),
regularizer=regularizer
)
else:
if activation == 'relu':
initializer = get_initializer('he_uniform')
elif activation == 'sigmoid' or activation == 'tanh':
initializer = get_initializer('glorot_uniform')
# if initializer is None, tensorFlow seems to be using
# a glorot uniform initializer
weights = tf.compat.v1.get_variable(
'weights',
kernel_shape,
regularizer=regularizer,
def vector_predictions(
self,
hidden,
hidden_size,
regularizer=None,
):
with tf.compat.v1.variable_scope('predictions_{}'.format(self.name)):
initializer_obj = get_initializer(self.initializer)
weights = tf.compat.v1.get_variable(
'weights',
initializer=initializer_obj([hidden_size, self.vector_size]),
regularizer=regularizer
)
logger.debug(' projection_weights: {0}'.format(weights))
biases = tf.compat.v1.get_variable(
'biases',
[self.vector_size]
)
logger.debug(' projection_biases: {0}'.format(biases))
logits = tf.matmul(hidden, weights) + biases
logger.debug(' logits: {0}'.format(logits))
if initializer is not None:
initializer_obj_ref = get_initializer(initializer)
else:
initializer_obj_ref = get_initializer(
{'type': 'uniform', 'minval': -1.0, 'maxval': 1.0})
initializer_obj = initializer_obj_ref([vocab_size, embedding_size])
embeddings = tf.compat.v1.get_variable('embeddings',
initializer=initializer_obj,
trainable=embeddings_trainable,
regularizer=regularizer)
elif representation == 'sparse':
embedding_size = vocab_size
embeddings = tf.compat.v1.get_variable('embeddings',
initializer=get_initializer('identity')(
[vocab_size, embedding_size]),
trainable=False)
else:
raise Exception(
'Embedding representation {} not supported.'.format(representation))
return embeddings, embedding_size
def fc_layer(inputs, in_count, out_count,
activation='relu', norm=None,
is_training=True, weights=None, biases=None,
dropout=False, dropout_rate=None,
initializer=None, regularizer=None):
if weights is None:
if initializer is not None:
initializer_obj = get_initializer(initializer)
weights = tf.compat.v1.get_variable(
'weights',
initializer=initializer_obj([in_count, out_count]),
regularizer=regularizer
)
else:
if activation == 'relu':
initializer = get_initializer('he_uniform')
elif activation == 'sigmoid' or activation == 'tanh':
initializer = get_initializer('glorot_uniform')
# if initializer is None, tensorFlow seems to be using
# a glorot uniform initializer
weights = tf.compat.v1.get_variable(
'weights',
[in_count, out_count],
regularizer=regularizer,
initializer=initializer
)
logger.debug(' fc_weights: {}'.format(weights))
if biases is None:
biases = tf.compat.v1.get_variable('biases', [out_count],
initializer=tf.constant_initializer(0.01))
is_training=True, weights=None, biases=None,
dropout=False, dropout_rate=None,
initializer=None, regularizer=None):
if weights is None:
if initializer is not None:
initializer_obj = get_initializer(initializer)
weights = tf.compat.v1.get_variable(
'weights',
initializer=initializer_obj([in_count, out_count]),
regularizer=regularizer
)
else:
if activation == 'relu':
initializer = get_initializer('he_uniform')
elif activation == 'sigmoid' or activation == 'tanh':
initializer = get_initializer('glorot_uniform')
# if initializer is None, tensorFlow seems to be using
# a glorot uniform initializer
weights = tf.compat.v1.get_variable(
'weights',
[in_count, out_count],
regularizer=regularizer,
initializer=initializer
)
logger.debug(' fc_weights: {}'.format(weights))
if biases is None:
biases = tf.compat.v1.get_variable('biases', [out_count],
initializer=tf.constant_initializer(0.01))
logger.debug(' fc_biases: {}'.format(biases))
def fc_layer(inputs, in_count, out_count,
activation='relu', norm=None,
is_training=True, weights=None, biases=None,
dropout=False, dropout_rate=None,
initializer=None, regularizer=None):
if weights is None:
if initializer is not None:
initializer_obj = get_initializer(initializer)
weights = tf.compat.v1.get_variable(
'weights',
initializer=initializer_obj([in_count, out_count]),
regularizer=regularizer
)
else:
if activation == 'relu':
initializer = get_initializer('he_uniform')
elif activation == 'sigmoid' or activation == 'tanh':
initializer = get_initializer('glorot_uniform')
# if initializer is None, tensorFlow seems to be using
# a glorot uniform initializer
weights = tf.compat.v1.get_variable(
'weights',
[in_count, out_count],
regularizer=regularizer,
stride=1, padding='SAME', activation='relu', norm=None,
dropout=False, dropout_rate=None, regularizer=None,
initializer=None,
dimensions=2, is_training=True):
if initializer is not None:
initializer_obj = get_initializer(initializer)
weights = tf.compat.v1.get_variable(
'weights',
initializer=initializer_obj(kernel_shape),
regularizer=regularizer
)
else:
if activation == 'relu':
initializer = get_initializer('he_uniform')
elif activation == 'sigmoid' or activation == 'tanh':
initializer = get_initializer('glorot_uniform')
# if initializer is None, tensorFlow seems to be using
# a glorot uniform initializer
weights = tf.compat.v1.get_variable(
'weights',
kernel_shape,
regularizer=regularizer,
initializer=initializer
)
logger.debug(' conv_weights: {0}'.format(weights))
biases = tf.compat.v1.get_variable('biases', biases_shape,
initializer=tf.constant_initializer(0.01))
logger.debug(' conv_biases: {0}'.format(biases))
if dimensions == 1:
return conv_1d(inputs, weights, biases,
def conv_layer(inputs, kernel_shape, biases_shape,
stride=1, padding='SAME', activation='relu', norm=None,
dropout=False, dropout_rate=None, regularizer=None,
initializer=None,
dimensions=2, is_training=True):
if initializer is not None:
initializer_obj = get_initializer(initializer)
weights = tf.compat.v1.get_variable(
'weights',
initializer=initializer_obj(kernel_shape),
regularizer=regularizer
)
else:
if activation == 'relu':
initializer = get_initializer('he_uniform')
elif activation == 'sigmoid' or activation == 'tanh':
initializer = get_initializer('glorot_uniform')
# if initializer is None, tensorFlow seems to be using
# a glorot uniform initializer
weights = tf.compat.v1.get_variable(
'weights',
kernel_shape,
regularizer=regularizer,
initializer=initializer
)
logger.debug(' conv_weights: {0}'.format(weights))
biases = tf.compat.v1.get_variable('biases', biases_shape,
initializer=tf.constant_initializer(0.01))
logger.debug(' conv_biases: {0}'.format(biases))