Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
a key `type` that identifies the type of initialzier and
other keys for its parameters, e.g.
`{type: normal, mean: 0, stddev: 0}`.
To know the parameters of each initializer, please refer to
TensorFlow's documentation.
:type initializer: str
:param regularize: if `True` the embedding wieghts are added to
the set of weights that get reularized by a regularization
loss (if the `regularization_lambda` in `training`
is greater than 0).
:type regularize: Boolean
"""
self.embedding_size = embedding_size
self.reduce_output = reduce_output
self.embed_mode = Embed(
[str(i) for i in range(3)],
embedding_size,
representation='dense',
embeddings_trainable=True,
pretrained_embeddings=None,
force_embedding_size=True,
embeddings_on_cpu=embeddings_on_cpu,
dropout=dropout,
initializer=initializer,
regularize=regularize
)
self.embed_edge = Embed(
[str(i) for i in range(7)],
embedding_size,
representation='dense',
embeddings_trainable=True,
dropout=dropout,
initializer=initializer,
regularize=regularize
)
self.embed_day = Embed(
[str(i) for i in range(31)],
embedding_size,
representation='dense',
embeddings_trainable=True,
pretrained_embeddings=None,
embeddings_on_cpu=embeddings_on_cpu,
dropout=dropout,
initializer=initializer,
regularize=regularize
)
self.embed_weekday = Embed(
[str(i) for i in range(7)],
embedding_size,
representation='dense',
embeddings_trainable=True,
pretrained_embeddings=None,
embeddings_on_cpu=embeddings_on_cpu,
dropout=dropout,
initializer=initializer,
regularize=regularize
)
self.embed_yearday = Embed(
[str(i) for i in range(366)],
embedding_size,
representation='dense',
embeddings_trainable=True,
pretrained_embeddings=None,
self.embedding_size = embedding_size
self.reduce_output = reduce_output
self.embed_mode = Embed(
[str(i) for i in range(3)],
embedding_size,
representation='dense',
embeddings_trainable=True,
pretrained_embeddings=None,
force_embedding_size=True,
embeddings_on_cpu=embeddings_on_cpu,
dropout=dropout,
initializer=initializer,
regularize=regularize
)
self.embed_edge = Embed(
[str(i) for i in range(7)],
embedding_size,
representation='dense',
embeddings_trainable=True,
pretrained_embeddings=None,
force_embedding_size=True,
embeddings_on_cpu=embeddings_on_cpu,
dropout=dropout,
initializer=initializer,
regularize=regularize
)
self.embed_resolution = Embed(
[str(i) for i in range(16)],
embedding_size,
representation='dense',
embeddings_trainable=True,
initializer=initializer,
regularize=regularize
)
self.embed_base_cell = Embed(
[str(i) for i in range(122)],
embedding_size,
representation='dense',
embeddings_trainable=True,
pretrained_embeddings=None,
force_embedding_size=True,
embeddings_on_cpu=embeddings_on_cpu,
dropout=dropout,
initializer=initializer,
regularize=regularize
)
self.embed_cells = Embed(
[str(i) for i in range(8)],
embedding_size,
representation='dense',
embeddings_trainable=True,
pretrained_embeddings=None,
force_embedding_size=True,
embeddings_on_cpu=embeddings_on_cpu,
dropout=dropout,
initializer=initializer,
regularize=regularize
)
self.fc_stack = FCStack(
layers=fc_layers,
num_layers=num_fc_layers,
default_fc_size=fc_size,
dropout=dropout,
initializer=initializer,
regularize=regularize
)
self.embed_weekday = Embed(
[str(i) for i in range(7)],
embedding_size,
representation='dense',
embeddings_trainable=True,
pretrained_embeddings=None,
embeddings_on_cpu=embeddings_on_cpu,
dropout=dropout,
initializer=initializer,
regularize=regularize
)
self.embed_yearday = Embed(
[str(i) for i in range(366)],
embedding_size,
representation='dense',
embeddings_trainable=True,
pretrained_embeddings=None,
embeddings_on_cpu=embeddings_on_cpu,
dropout=dropout,
initializer=initializer,
regularize=regularize
)
self.embed_hour = Embed(
[str(i) for i in range(24)],
embedding_size,
representation='dense',
embeddings_trainable=True,
pretrained_embeddings=None,
:param regularize: if `True` the embedding wieghts are added to
the set of weights that get reularized by a regularization
loss (if the `regularization_lambda` in `training`
is greater than 0).
:type regularize: Boolean
"""
self.year_fc = FCStack(
num_layers=1,
default_fc_size=1,
default_activation=None,
default_norm=None,
default_dropout=dropout,
default_regularize=regularize,
default_initializer=initializer
)
self.embed_month = Embed(
[str(i) for i in range(12)],
embedding_size,
representation='dense',
embeddings_trainable=True,
pretrained_embeddings=None,
embeddings_on_cpu=embeddings_on_cpu,
dropout=dropout,
initializer=initializer,
regularize=regularize
)
self.embed_day = Embed(
[str(i) for i in range(31)],
embedding_size,
representation='dense',
embeddings_trainable=True,
pretrained_embeddings=None,
def __init__(
self,
vocab,
embedding_size,
representation='dense',
embeddings_trainable=True,
pretrained_embeddings=None,
force_embedding_size=False,
embeddings_on_cpu=False,
mask=True,
dropout=False,
initializer=None,
regularize=True
):
self.embed = Embed(
vocab,
embedding_size,
representation=representation,
embeddings_trainable=embeddings_trainable,
pretrained_embeddings=pretrained_embeddings,
force_embedding_size=force_embedding_size,
embeddings_on_cpu=embeddings_on_cpu,
dropout=dropout,
initializer=initializer,
regularize=regularize
)
self.mask = mask
initializer=initializer,
regularize=regularize
)
self.embed_resolution = Embed(
[str(i) for i in range(16)],
embedding_size,
representation='dense',
embeddings_trainable=True,
pretrained_embeddings=None,
force_embedding_size=True,
embeddings_on_cpu=embeddings_on_cpu,
dropout=dropout,
initializer=initializer,
regularize=regularize
)
self.embed_base_cell = Embed(
[str(i) for i in range(122)],
embedding_size,
representation='dense',
embeddings_trainable=True,
pretrained_embeddings=None,
force_embedding_size=True,
embeddings_on_cpu=embeddings_on_cpu,
dropout=dropout,
initializer=initializer,
regularize=regularize
)
self.embed_cells = Embed(
[str(i) for i in range(8)],
embedding_size,
representation='dense',
embeddings_trainable=True,
default_dropout=dropout,
default_regularize=regularize,
default_initializer=initializer
)
self.embed_month = Embed(
[str(i) for i in range(12)],
embedding_size,
representation='dense',
embeddings_trainable=True,
pretrained_embeddings=None,
embeddings_on_cpu=embeddings_on_cpu,
dropout=dropout,
initializer=initializer,
regularize=regularize
)
self.embed_day = Embed(
[str(i) for i in range(31)],
embedding_size,
representation='dense',
embeddings_trainable=True,
pretrained_embeddings=None,
embeddings_on_cpu=embeddings_on_cpu,
dropout=dropout,
initializer=initializer,
regularize=regularize
)
self.embed_weekday = Embed(
[str(i) for i in range(7)],
embedding_size,
representation='dense',
embeddings_trainable=True,
pretrained_embeddings=None,
super().__init__(feature)
self.vocab = []
self.embedding_size = 50
self.representation = 'dense'
self.embeddings_trainable = True
self.pretrained_embeddings = None
self.embeddings_on_cpu = False
self.dropout = False
self.initializer = None
self.regularize = True
_ = self.overwrite_defaults(feature)
self.embed = Embed(
vocab=self.vocab,
embedding_size=self.embedding_size,
representation=self.representation,
embeddings_trainable=self.embeddings_trainable,
pretrained_embeddings=self.pretrained_embeddings,
embeddings_on_cpu=self.embeddings_on_cpu,
dropout=self.dropout,
initializer=self.initializer,
regularize=self.regularize
)