How to use lab - 10 common examples

To help you get started, we’ve selected a few lab examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github vpj / lab / backend / samples / mnist_tensorflow.py View on Github external
# Creation of the trainer
    with logger.section("Create trainer"):
        optimizer = tf.train.AdamOptimizer(learning_rate=args.lr)
        train_iterator = train_dataset.make_initializable_iterator()
        data, target = train_iterator.get_next()
        train_loss = loss(model, data, target)
        train_op = optimizer.minimize(train_loss)

        test_iterator = test_dataset.make_initializable_iterator()
        data, target = test_iterator.get_next()
        test_loss = loss(model, data, target)
        test_accuracy = accuracy(model, data, target)

    logger.add_indicator("train_loss", queue_limit=10, is_print=True)
    logger.add_indicator("test_loss", is_histogram=False, is_print=True)
    logger.add_indicator("accuracy", is_histogram=False, is_print=True)

    #
    batches = len(x_train) // args.batch_size

    with tf.Session() as session:
        EXPERIMENT.start_train(session)

        # Loop through the monitored iterator
        for epoch in logger.loop(range(0, args.epochs)):
            # Delayed keyboard interrupt handling to use
            # keyboard interrupts to end the loop.
            # This will capture interrupts and finish
            # the loop at the end of processing the iteration;
            # i.e. the loop won't stop in the middle of an epoch.
            try:
                with logger.delayed_keyboard_interrupt():
github wesselb / stheno / tests / test_matrix.py View on Github external
def compare(a):
        allclose(B.transpose(a), to_np(a).T)
github wesselb / stheno / tests / test_util.py View on Github external
def test_uprank():
    allclose(uprank(0), [[0]])
    allclose(uprank(np.array([0])), [[0]])
    allclose(uprank(np.array([[0]])), [[0]])
    assert type(uprank(Component('test')(0))) == Component('test')

    k = OneKernel()

    assert B.shape(k(0, 0)) == (1, 1)
    assert B.shape(k(0, np.ones(5))) == (1, 5)
    assert B.shape(k(0, np.ones((5, 2)))) == (1, 5)

    assert B.shape(k(np.ones(5), 0)) == (5, 1)
    assert B.shape(k(np.ones(5), np.ones(5))) == (5, 5)
    assert B.shape(k(np.ones(5), np.ones((5, 2)))) == (5, 5)

    assert B.shape(k(np.ones((5, 2)), 0)) == (5, 1)
    assert B.shape(k(np.ones((5, 2)), np.ones(5))) == (5, 5)
    assert B.shape(k(np.ones((5, 2)), np.ones((5, 2)))) == (5, 5)

    with pytest.raises(ValueError):
        k(0, np.ones((5, 2, 1)))
    with pytest.raises(ValueError):
        k(np.ones((5, 2, 1)))

    m = OneMean()
github wesselb / stheno / tests / test_util.py View on Github external
def test_uprank():
    allclose(uprank(0), [[0]])
    allclose(uprank(np.array([0])), [[0]])
    allclose(uprank(np.array([[0]])), [[0]])
    assert type(uprank(Component('test')(0))) == Component('test')

    k = OneKernel()

    assert B.shape(k(0, 0)) == (1, 1)
    assert B.shape(k(0, np.ones(5))) == (1, 5)
    assert B.shape(k(0, np.ones((5, 2)))) == (1, 5)

    assert B.shape(k(np.ones(5), 0)) == (5, 1)
    assert B.shape(k(np.ones(5), np.ones(5))) == (5, 5)
    assert B.shape(k(np.ones(5), np.ones((5, 2)))) == (5, 5)

    assert B.shape(k(np.ones((5, 2)), 0)) == (5, 1)
    assert B.shape(k(np.ones((5, 2)), np.ones(5))) == (5, 5)
    assert B.shape(k(np.ones((5, 2)), np.ones((5, 2)))) == (5, 5)

    with pytest.raises(ValueError):
        k(0, np.ones((5, 2, 1)))
    with pytest.raises(ValueError):
        k(np.ones((5, 2, 1)))

    m = OneMean()

    assert B.shape(m(0)) == (1, 1)
    assert B.shape(m(np.ones(5))) == (5, 1)
    assert B.shape(m(np.ones((5, 2)))) == (5, 1)
github wesselb / stheno / tests / test_matrix.py View on Github external
def test_dtype():
    # Test `Dense`.
    assert B.dtype(Dense(np.array([[1]]))) == np.int64
    assert B.dtype(Dense(np.array([[1.0]]))) == np.float64

    # Test `Diagonal`.
    diag_int = Diagonal(np.array([1]))
    diag_float = Diagonal(np.array([1.0]))
    assert B.dtype(diag_int) == np.int64
    assert B.dtype(diag_float) == np.float64

    # Test `LowRank`.
    lr_int = LowRank(left=np.array([[1]]),
                     right=np.array([[2]]),
                     middle=np.array([[3]]))
    lr_float = LowRank(left=np.array([[1.0]]),
                       right=np.array([[2.0]]),
                       middle=np.array([[3.0]]))
    assert B.dtype(lr_int) == np.int64
    assert B.dtype(lr_float) == np.float64

    # Test `Constant`.
    assert B.dtype(Constant(1, rows=1)) == int
    assert B.dtype(Constant(1.0, rows=1)) == float

    # Test `Woodbury`.
github wesselb / stheno / tests / test_matrix.py View on Github external
assert B.dtype(diag_int) == np.int64
    assert B.dtype(diag_float) == np.float64

    # Test `LowRank`.
    lr_int = LowRank(left=np.array([[1]]),
                     right=np.array([[2]]),
                     middle=np.array([[3]]))
    lr_float = LowRank(left=np.array([[1.0]]),
                       right=np.array([[2.0]]),
                       middle=np.array([[3.0]]))
    assert B.dtype(lr_int) == np.int64
    assert B.dtype(lr_float) == np.float64

    # Test `Constant`.
    assert B.dtype(Constant(1, rows=1)) == int
    assert B.dtype(Constant(1.0, rows=1)) == float

    # Test `Woodbury`.
    assert B.dtype(Woodbury(diag_int, lr_int)) == np.int64
    assert B.dtype(Woodbury(diag_float, lr_float)) == np.float64
github wesselb / stheno / tests / test_matrix.py View on Github external
def test_inverse_and_logdet():
    # Test `Dense`.
    a = np.random.randn(3, 3)
    a = Dense(a.dot(a.T))
    allclose(B.matmul(a, B.inverse(a)), np.eye(3))
    allclose(B.matmul(B.inverse(a), a), np.eye(3))
    allclose(B.logdet(a), np.log(np.linalg.det(to_np(a))))

    # Test `Diagonal`.
    d = Diagonal(np.array([1, 2, 3]))
    allclose(B.matmul(d, B.inverse(d)), np.eye(3))
    allclose(B.matmul(B.inverse(d), d), np.eye(3))
    allclose(B.logdet(d), np.log(np.linalg.det(to_np(d))))
    assert B.shape(B.inverse(Diagonal(np.array([1, 2]),
                                      rows=2, cols=4))) == (4, 2)

    # Test `Woodbury`.
    a = np.random.randn(3, 2)
    b = np.random.randn(2, 2) + 1e-2 * np.eye(2)
    wb = d + LowRank(left=a, middle=b.dot(b.T))
    for _ in range(4):
        allclose(B.matmul(wb, B.inverse(wb)), np.eye(3))
        allclose(B.matmul(B.inverse(wb), wb), np.eye(3))
        allclose(B.logdet(wb), np.log(np.linalg.det(to_np(wb))))
        wb = B.inverse(wb)

    # Test `LowRank`.
github wesselb / stheno / tests / test_matrix.py View on Github external
def test_sample():
    a = np.random.randn(3, 3)
    a = Dense(a.dot(a.T))
    b = np.random.randn(2, 2)
    wb = Diagonal(B.diag(a)) + LowRank(left=np.random.randn(3, 2),
                                       middle=b.dot(b.T))

    # Test `Dense` and `Woodbury`.
    num_samps = 500000
    for cov in [a, wb]:
        samps = B.sample(cov, num_samps)
        cov_emp = B.matmul(samps, samps, tr_b=True) / num_samps
        assert np.mean(np.abs(to_np(cov_emp) - to_np(cov))) <= 5e-2
github wesselb / stheno / tests / test_matrix.py View on Github external
def compare(a, b):
        return np.allclose(to_np(B.matmul(a, b)),
                           B.matmul(to_np(a), to_np(b)))
github wesselb / stheno / tests / test_matrix.py View on Github external
def test_diag():
    # Test `Dense`.
    a = np.random.randn(5, 3)
    allclose(B.diag(Dense(a)), np.diag(a))

    # Test `Diagonal`.
    allclose(B.diag(Diagonal(np.array([1, 2, 3]))), [1, 2, 3])
    allclose(B.diag(Diagonal(np.array([1, 2, 3]), 2)), [1, 2])
    allclose(B.diag(Diagonal(np.array([1, 2, 3]), 4)), [1, 2, 3, 0])

    # Test `LowRank`.
    b = np.random.randn(10, 3)
    allclose(B.diag(LowRank(left=a, right=a)), np.diag(a.dot(a.T)))
    allclose(B.diag(LowRank(left=a, right=b)), np.diag(a.dot(b.T)))
    allclose(B.diag(LowRank(left=b, right=b)), np.diag(b.dot(b.T)))

    # Test `Constant`.
    allclose(B.diag(Constant(1, rows=3, cols=5)), np.ones(3))

    # Test `Woodbury`.