How to use the lab.logger.store function in lab

To help you get started, we’ve selected a few lab examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github vpj / lab / samples / mnist_configs.py View on Github external
def _test(self):
        self.model.eval()
        test_loss = 0
        correct = 0
        with torch.no_grad():
            for data, target in logger.iterator("Test", self.test_loader):
                data, target = data.to(self.device), target.to(self.device)
                output = self.model(data)
                test_loss += F.nll_loss(output, target, reduction='sum').item()
                pred = output.argmax(dim=1, keepdim=True)
                correct += pred.eq(target.view_as(pred)).sum().item()

        # Add test loss and accuracy to logger
        logger.store(test_loss=test_loss / len(self.test_loader.dataset))
        logger.store(accuracy=correct / len(self.test_loader.dataset))
github vpj / lab / samples / mnist_loop.py View on Github external
def _test(self):
        self.model.eval()
        test_loss = 0
        correct = 0
        with torch.no_grad():
            for data, target in logger.iterator("Test", self.test_loader):
                data, target = data.to(self.device), target.to(self.device)
                output = self.model(data)
                test_loss += F.nll_loss(output, target, reduction='sum').item()
                pred = output.argmax(dim=1, keepdim=True)
                correct += pred.eq(target.view_as(pred)).sum().item()

        # Add test loss and accuracy to logger
        logger.store(test_loss=test_loss / len(self.test_loader.dataset))
        logger.store(accuracy=correct / len(self.test_loader.dataset))
github vpj / lab / samples / mnist_loop.py View on Github external
def _test(self):
        self.model.eval()
        test_loss = 0
        correct = 0
        with torch.no_grad():
            for data, target in logger.iterator("Test", self.test_loader):
                data, target = data.to(self.device), target.to(self.device)
                output = self.model(data)
                test_loss += F.nll_loss(output, target, reduction='sum').item()
                pred = output.argmax(dim=1, keepdim=True)
                correct += pred.eq(target.view_as(pred)).sum().item()

        # Add test loss and accuracy to logger
        logger.store(test_loss=test_loss / len(self.test_loader.dataset))
        logger.store(accuracy=correct / len(self.test_loader.dataset))
github vpj / lab / samples / mnist_configs.py View on Github external
def _test(self):
        self.model.eval()
        test_loss = 0
        correct = 0
        with torch.no_grad():
            for data, target in logger.iterator("Test", self.test_loader):
                data, target = data.to(self.device), target.to(self.device)
                output = self.model(data)
                test_loss += F.nll_loss(output, target, reduction='sum').item()
                pred = output.argmax(dim=1, keepdim=True)
                correct += pred.eq(target.view_as(pred)).sum().item()

        # Add test loss and accuracy to logger
        logger.store(test_loss=test_loss / len(self.test_loader.dataset))
        logger.store(accuracy=correct / len(self.test_loader.dataset))
github vpj / lab / backend / samples / mnist_tensorflow.py View on Github external
def test(session: tf.Session, loss_value, accuracy_value, batches):
    with logger.section("Test", total_steps=batches):
        test_loss = 0
        correct = 0
        batch_idx = -1
        while True:
            batch_idx += 1
            try:
                l, a = session.run([loss_value, accuracy_value])
                test_loss += l
                correct += a
            except tf.errors.OutOfRangeError:
                break
            logger.progress(batch_idx + 1)

        logger.store(test_loss=test_loss / batches)
        logger.store(accuracy=correct / batches)
github vpj / lab / backend / samples / mnist_pytorch.py View on Github external
with logger.section("Test", total_steps=len(test_loader)):
        model.eval()
        test_loss = 0
        correct = 0
        with torch.no_grad():
            for batch_idx, (data, target) in enumerate(test_loader):
                data, target = data.to(device), target.to(device)
                output = model(data)
                test_loss += F.nll_loss(output, target, reduction='sum').item()
                pred = output.argmax(dim=1, keepdim=True)
                correct += pred.eq(target.view_as(pred)).sum().item()
                logger.progress(batch_idx + 1)

        # Add test loss and accuracy to logger
        logger.store(test_loss=test_loss / len(test_loader.dataset))
        logger.store(accuracy=correct / len(test_loader.dataset))
github vpj / lab / samples / getting_started.py View on Github external
# A sample monitored section inside iterator
                with logger.section("sample"):
                    time.sleep(0.5)

                # A silent section is used only to organize code.
                # It produces no output
                with logger.section("logging", is_silent=True):
                    # Store values
                    logger.store(
                        reward=global_step / 3.0,
                        fps=12
                    )
                    # Store more values
                    for i in range(global_step, global_step + 10):
                        logger.store('loss', i)
                        logger.store(advantage_reward=(i, i * 2))

                # Another silent section
                with logger.section("process_samples", is_silent=True):
                    time.sleep(0.5)

                # A third section with an inner loop
                with logger.section("train", total_steps=100):
                    # Let it run for multiple iterations.
                    # We'll track the progress of that too
                    for i in range(100):
                        time.sleep(0.01)
                        # Progress is tracked manually unlike in the top level iterator.
                        # The progress updates do not have to be sequential.
                        logger.progress(i + 1)

                # Log stored values.
github vpj / lab / backend / samples / mnist_tensorflow.py View on Github external
with logger.section("Test", total_steps=batches):
        test_loss = 0
        correct = 0
        batch_idx = -1
        while True:
            batch_idx += 1
            try:
                l, a = session.run([loss_value, accuracy_value])
                test_loss += l
                correct += a
            except tf.errors.OutOfRangeError:
                break
            logger.progress(batch_idx + 1)

        logger.store(test_loss=test_loss / batches)
        logger.store(accuracy=correct / batches)
github vpj / lab / samples / mnist_configs.py View on Github external
def _train(self):
        self.model.train()
        for i, (data, target) in logger.enumerator("Train", self.train_loader):
            data, target = data.to(self.device), target.to(self.device)
            self.optimizer.zero_grad()
            output = self.model(data)
            loss = F.nll_loss(output, target)
            loss.backward()
            self.optimizer.step()

            # Add training loss to the logger.
            # The logger will queue the values and output the mean
            logger.store(train_loss=loss.item())
            logger.add_global_step()

            # Print output to the console
            if i % self.log_interval == 0:
                # Output the indicators
                logger.write()